Methane inflow in roadways as a result of process blasting impact on coal seam

The blasting-induced seismic load on Kumpanovsky coal seam in Butovskaya Mine, Kemerovo, Kuzbass in the course of temporary roadway heading is estimated, and the increased concentration of methane is recorded. The delineated zone of methane migration is connected with alternation in the rock mass condition, as well as with the blast location and strength. The minimum amplitudes of coal vibrations are determined, and the seismic energy flow density sufficient to initiate extra inflow of methane in roadways is calculated. The seismic signal and methane emission in roadways are determined with a decreasing distance from the blasting point. The volume of additional methane emission in roadways is found. The decrease in the PPV value and in the seismic energy density is calculated versus the increasing distance from the blasting site. The methane outgassing radius in coal is calculated as function of the initial excited vibration amplitude and seismic energy flow density. The seismic energy flow density pattern is presented depending on the blast source location. The calculation procedure of characteristics of impact on methane-bearing coal seam is proposed for substantiation of coal seam drainage technology and mine air control.

Keywords: process blasts, in-situ measurements, seismic vibrations, seismic energy flow density, methane, mine, coal seam, gas emission zone, outgassing.
For citation:

Kurlenya M. V., Tsupov M. N., Savchenko A. V. Methane inflow in roadways as a result of process blasting impact on coal seam. MIAB. Mining Inf. Anal. Bull. 2022;(9):5-14. [In Russ]. DOI: 10.25018/0236_1493_2022_9_0_5.

Acknowledgements:
Issue number: 9
Year: 2022
Page number: 5-14
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236_1493_2022_9_0_5
Article receipt date: 27.04.2022
Date of review receipt: 28.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.08.2022
About authors:

M.V. Kurlenya1, Аcademician of Russian Academy of Sciences, Dr. Sci. (Eng.), Professor, Scientific Supervisor of Institute of Mining of SB RAS, ORCID ID: 0000-0003-2610-8434,
M.N. Tsupov1, Leading Engineer, e-mail: lion_ltd@mail.ru, 
A.V. Savchenko1, Cand. Sci. (Eng.), Assistant Professor, Head of Department, e-mail: sav@eml.ru, ORCID ID: 0000-0001-8458-1487,
1 Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia.

 

For contacts:

A.V. Savchenko, e-mail: sav@eml.ru.

Bibliography:

1. Kurlenya M. V., Tsupov M. N., Savchenko A. V. Influence of the bachatsky earthquake on methane emission in roadways in coal mines. Journal of Mining Science. 2019, vol. 55, no. 5, pp. 695–700. DOI: 10.1134/S1062739119056051.

2. Li T., Cai M. F., Cai M. Earthquake-induced unusual gas emission in coalmines. A kmscale in-situ experimental investigation at Laohutai mine. International Journal of Coal Geology. 2007, vol. 71, pp. 209–224. DOI: 10.1016/j.coal.2006.08.004.

3. Lia T., Cai M. F., Cai M. A review of mining-induced seismicity in China. International Journal of Rock Mechanics & Mining Sciences. 2007, vol. 44, pp. 1149–1171. DOI: 10.1016/j. ijrmms.2007.06.002.

4. Si G., Durucan S., Jamnikar S., Lazar J., Abraham K., Korre A., Shi Ji-Q., Zavšek S., Mutke G., Lurka A. Seismic monitoring and analysis of excessive gas emissions in heterogeneous coal seams. International Journal of Coal Geology. 2015, vol. 149, pp. 41–54. DOI: 10.1016/ j.coal.2015.06.016.

5. Wen Z., Wang X., Tan Y., Zhang H., Huang W., Li Q. A study of rockburst hazard evaluation method in coalmine. Shock and Vibration. 2016, vol. 2016, pp. 1–9. DOI: 10.1155/2016/8740868.

6. Luxbacher K. D., Erdogan S. S., Karacan C. Ö. Modeling methane emissions and ventilation needs by examination of mining induced permeability changes and related damage to ventilation controls. 43rd U.S. Rock Mechanics Symposium / 4th U.S.-Canada Rock Mechanics Symposium. 2009, Ashland, North Carolina. 2009, pp. 1–8.

7. Rojstaczer S., Wolf S. Permeability changes associated with large earthquakes: An example from Loma Prieta, California. Geology. 1992, vol. 20, no. 3, pp. 211–214. DOI: 10.1130/0091-7613(1992)020<0211:PCAWLE>2.3.CO;2.

8. Shi Zh., Wang Zh., Zuochen G. Quantitative assessment of the mechanisms of earthquake-induced groundwater-level change in the MP well, Three Gorges area. Pure and Applied Geophysics. 2018, vol. 175, no. 7, pp. 2475–2484. DOI: 10.1007/s00024-017-1643-6.

9. Cao P., Liu J., Leong Y.-K. General gas permeability model for porous media: bridging the gaps between conventional and unconventional natural gas reservoirs. Energy & Fuels. 2016, vol. 30, no. 7, pp. 5492–5505. DOI: 10.1021/acs.energyfuels.6b00683.

10. Qi Q., Zhang L., Zuo Sh., Sun Z., Deng K., Bi R., Cao Y. Modelling and simulation of earthquake-induced changes in methane emission from the working face in an underground coal mine. The Journal of Engineering. 2021, pp. 1–12. DOI: 10.1049/tje2.12119.

11. Harpalani S., Chen G. Influence of gas production induced volumetric strain on permeability of coal. Geotechnical & Geological Engineering. 1997, vol. 15, no. 4, pp. 303–325. DOI: 10.1007/BF00880711.

12. Bell J. S. In-situ stress and coal bed methane potential in Western Canada. Bulletin of Canadian Petroleum Geology. 2006, vol. 54, no. 3, pp. 197–220. DOI: 10.2113/gscpgbull.54. 3.197.

13. Wang G. X., Massarotto P., Rudolph V. An improved permeability model of coal for coalbed methane recovery and CO2 geosequestration. International Journal of Coal Geology. 2009, vol. 77, no. 1–2, pp. 127–136. DOI: 10.1016/j.coal.2008.10.007.

14. Kurlenya M. V., Tsupov M. N., Savchenko A. V., Pugachev K. A. Effect of blasting on methane drainage in coal seam. Journal of Mining Science. 2020, vol. 56, no. 5, pp. 793–796. DOI: 10.1134/S1062739120057129.

15. Fedorchenko I. A., Fedorov A. V. Gas-dynamic stage of the coal and gas outburst with allowance for desorption. Journal of Mining Science. 2012, vol. 48, no. 1 pp. 15–26. DOI: 10.1134/S1062739148010030.

16. Shemyakin E. I. Dinamicheskie zadachi teorii uprugosti i plastichnosti [Dynamic problems of the theory of elasticity and plasticity], Novosibirsk, NGU, 1968, 338 p.

17. Shubin V. P. To the question of the study of physical and mechanical properties of some rocks of coal mines of Kuzbas. Izvestiya Tomskogo politekhnicheskogo instituta. 1951, vol. 68, no. 1, pp. 130–170. [In Russ].

18. Nielsen P. Numerical modelling of seismic waves: on the elimination of grid artifact. Bergen, Norway, 1994. 47 p.

19. Bérenger J. P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics. 1994, vol. 114, pp. 185–200. DOI: 10.1006/jcph.1994.1159.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.