Bibliography: 1. Novozhenin S. U., Vystrchil M. G., Bogdanova K. A. Analysis of the mathematical modelling results of displacements and deformations induced by the construction of the escalator tunnel of «Mining Institute» station in Saint Petersburg. Journal of Physics: Conference Series. 2020, vol. 1661, no. 1, article 012105. DOI: 10.1088/1742-6596/1661/1/012105.
2. Karasev M. A., Sotnikov R. O. Prediction of the stress state of the shotcreting support under repeated seismic load. Journal of Mining Institute. 2021, vol. 251, pp. 626—638. [In Russ]. DOI: 10.31897/PMI.2021.5.2.
3. Protosenya A. G., Lebedev M. O., Karasev M. A., Belyakov N. A. Geomechanics of lowsubsidence construction during the development space in large cities and megalopolises. International Journal of Mechanical and Production Engineering Research and Development. 2019, vol. 9, no. 5, pp. 1005—1014.
4. Ignatiev S. A., Sudarikov A. E., Imashev A. Zh. Determination of the stress-strain state of rock mass and zone of inelastic deformation around underground mine excavation using modern methods of numerical modeling. Journal of Sustainable Mining. 2021, vol. 20, no. 3, pp. 220—227. DOI: 10.46873/2300-3960.1324.
5. Nguyen Tai Tien, Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behavior. ICE Proceedings Geotechnical Engineering. 2021, vol. 174, no. 4, pp. 355—371. DOI: 10.1680/jgeen.20.00057.
6. Protosenya A. G., Iovlev G. А. Prediction of spatial stress–strain behavior of physically nonlinear soil mass in tunnel face area. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 128—139. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-128-139.
7. Yungmeister D. A., Yacheykin A. I.Rational design justification of the tunnel boring shield executive body for the conditions of the mines of Saint Petersburg Metrostroy. Journal of Mining Institute. 2021, vol. 249, pp. 441—448. [In Russ]. DOI: 10.31897/PMI.2021.3.13.
8. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022, vol. 254, pp. 252—260. [In Russ]. DOI: 10.31897/PMI.2022.26.
9. Kujawa M., Lubowiecka I., Szymczak C. Finite element modelling of a historic church structure in the context of a masonry damage analysis. Engineering Failure Analysis. 2020, vol. 107, article 104233. DOI: 10.1016/j.engfailanal.2019.104233.
10. Golik V. I., Kongar-Syuryun Ch. B., Michałek A., Pires P., Rybak A. Ground transmitted vibrations in course of innovative vinyl sheet piles driving. Journal of Physics: Conference Series. 2021, vol. 1921, no. 1, article 012083. DOI: 10.1088/1742-6596/1921/1/012083.
11. Gregori A., Mercuri M., Angiolilli M., Pathirage M. Simulating defects in brick masonry panels subjected to compressive loads. Engineering Structures. 2022, vol. 263, article 114333. DOI: 10.1016/j.engstruct.2022.114333.
12. Liu B., Xue J., Lehane B. M. Centrifuge investigation of soil—foundation—superstructure interaction under static loading. Engineering Structures. 2023, vol. 281, article 115779. DOI: 10.1016/j.engstruct.2023.115779.
13. Cao Z., Ba X., Yuan Z., Wang J., Zheng K., Xu Y. An analytical solution for the dynamic tunnel—soil—shallow foundation interaction under a harmonic point load. Soil Dynamics and Earthquake Engineering. 2023, vol. 164, article 107647. DOI: 10.1016/j.soildyn.2022.107647.
14. Dalgic K. D., Hendriks M. A., Ilki A., Broere W. A two-stage numerical analysis approach for the assessment of the settlement response of the pre-damaged historic Hoca Pasha Mosque. International Journal of Architectural Heritage. 2019, vol. 13, no. 5, pp. 704—724. DOI: 10.1080/15583058.2018.1469174.
15. Pascariello M. N., Luciano A., Bilotta E., Acikgoz S., Mair R. Numerical modelling of the response of two heritage masonry buildings to nearby tunneling. Tunnelling and Underground Space Technology. 2023, vol. 131, article 104845. DOI: 10.1016/j.tust.2022.104845.
16. Ritter S., Giardina G., Franza A., DeJong M. J. Building deformation caused by tunneling: centrifuge modeling. Journal of Geotechnical and Geoenvironmental Engineering. 2020, vol. 146, no. 5, pp. 1—17. DOI: 10.1061/(ASCE)GT.1943-5606.00022.23.
17. Xu J., Franza A., Marshall A. M. Response of Framed Buildings on Raft Foundations to Tunneling. Journal of Geotechnical and Geoenvironmental Engineering. 2020, vol. 146, no. 11, article 04020120. DOI: 10.1061/(ASCE)GT.1943-5606.0002376.
18. Bocharov S. I. Razrabotka metodiki prognozirovaniya povrezhdeniy zdaniy, raspolozhennykh nad gornymi vyrabotkami, na osnove mnogomernogo matematicheskogo modelirovaniya [Development of a methodology for predicting damage to buildings located above mine workings based on multidimensional mathematical modeling], Candidate’s thesis, Novocherkassk, NPI, 1984, 24 p.
19. Varlashkin V. M., Muller R. A., Markov V. V. On the choice of the optimal indicator of total deformations to determine the degree of damage to multi-storey buildings in operation during mining in the Donetsk basin. Trudy VNIMI. 1965, no. 35, pp. 112—145. [In Russ].
20. Varlashkin V. M., Markov V. V. Obobshchenie sluchaev podrabotki grazhdanskikh zdaniy v Donbasse [Generalization of cases of undermining of civil buildings in Donbass], Moscow, Tsentrogiproshakht, 1961, 112 p.
21. Reshetov G. A. Iznos i predel'nye usloviya ekspluatatsii grazhdanskikh zdaniy na podrabatyvaemykh territoriyakh [Depreciation and limiting conditions for the operation of civil buildings in undermined territories], Candidate’s thesis, Leningrad, LIIZhT, 1975, 23 p.
22. Shagalov S. E., Muller R. A., Markov V. V. Zashchita i podrabotka zdaniy i sooruzheniy [Protection and underworking of buildings and structures], Moscow, Nedra, 1974, 256 p.
23. Balezin R., Shulyatyev O., Shulyatyev S., Buslov A. Criteria definition for high-rise buildings foundations deformation limitation. Bulletin of Science and Research Center of Construction. 2021, vol. 29, pp. 13—27. [In Russ]. DOI: 10.37538/2224-9494-2021-2(29)-13-27.
24. Boscardin M. D., Cording E. J. Building response to excavation-included settlement. Journal of Geotechnical Engineering-Asce. 1989, vol. 115, pp. 1—21.
25. Burland J. B., Wroth C. P. Settlement of buildings and associated damage. Building Research Establishment. 1975, vol. 65, article 00127405.
26. Timoshenko S. Strength of materials. Van Nostrand, New York, 1957, 571 p.
27. Jian Y., Leung C. F., Maosong H., Tan J. Q. W. Assessment of settlement-based strain in masonry building facade due to tunneling. Computers and Geotechnics. 2022, vol. 144, article 104658. DOI: 10.1016/j.compgeo.2022.104658.
28. Son M., Cording E. J. Estimation of building damage in a 3D distorting structure to tunnel and underground excavation-induced ground movements. Tunnelling and Underground Space Technology. 2020, vol. 97, pp. 511—521. DOI: 10.1016/j.tust.2019.103222.
29. Franza A., Deck O., DeJong M. J. Charts for the mining-induced deflection of buildings. Canadian Geotechnical Journal. 2020, vol. 57, no. 12, pp. 2020—2026. DOI: 10.1139/cgj-2019-0041.
30. Liu N. W., Liang Y. Y., Yu F. K., Gong X. N., Chen Y. T. Estimation of building damage caused by adjacent deep excavation in clay. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering. 2021, vol. 174, no. 4, pp. 430—445. DOI: 1604 10.1680/ jgeen.19.00097.
31. Zhao C., Schmüdderich C., Barciaga N., Röchter R. Response of building to shallow tunnel excavation in different types of soil. Computers and Geotechnics. 2019, vol. 115, article 103165. DOI: 10.1016/j.compgeo.2019.103165.
32. Burd H. J., Yiu W. N., Acikgoz S., Martin C. M. Soil-foundation interaction model for the assessment of tunnelling-induced damage to masonry buildings. Tunnelling and Underground Space Technology. 2022, vol. 119, article 104208. DOI: 10.1016/j.tust.2021.104208.
33. Dalgic K. D., Gulen B., Liu Y., Acikgoz S., Burd H., Marasli M., Ilk A. Masonry buildings subjected to settlements: Half-scale testing, detailed measurements, and insights into behavior. Engineering Structures. 2023, vol. 278, article 115233. DOI: 10.1016/j.engstruct.2022.115233.
34. Giardina G., DeJong M. J., Chalmers B., Ormond B., Mair R. J. A comparison of current analytical methods for predicting soil-structure interaction due to tunneling. Tunnelling and Underground Space Technology. 2018, vol. 79, pp. 319—335. DOI: 10.1016/j.tust.2018.04.013.
35. Amorosi A., Sangirardi M. Coupled three-dimensional analysis of the progressive tunnelling-induced damage to masonry buildings: is it always worth it? Tunnelling and Underground Space Technology. 2021, vol. 118, article 104173. DOI: 10.1016/j.tust.2021.104173.
36. Bilotta E., Paolillo A., Russo G., Aversa S. Displacements induced by tunnelling under a historical building. Tunnelling and Underground Space Technology. 2017, vol. 61, pp. 221—232. DOI: 10.1016/j.tust.2016.10.007.
37. Volokhov E. M., Zelentsov S. N., Khutsky V. P. Problems of regulatory and methodological support for assessing the harmful effects of underground construction and deformation monitoring for the conditions of St. Petersburg. Journal of Mining Institute. 2012, no. 199, pp. 260—262. [In Russ].
38. Tokar R. A. On the calculation of foundations by deformation. Trudy instituta NIIOSP im. N.M. Gersevanova Gosstroya SSSR. 1956, vol. 30, pp. 5—38. [In Russ].
39. Polshin D. E. On the calculations of the foundations of structures for limiting states. Fundamenty i mekhanika gruntov. 1959, no. 1, pp. 9—11. [In Russ].
40. Vasil'ev B. D. Vozvedenie kapital'nykh zdaniy na sil'no szhimaemykh osnovaniyakh [Erection of capital buildings on highly compressible foundations], Moscow, 1952, 128 p.
41. TSytovich N. A. Osnovaniya i fundamenty na merzlykh gruntakh [Bases and foundations on frozen soils], Moscow, Akademiya nauk SSSR, 1958, 168 p.
42. Polshin D. Е., Tokar R. А. Maximum allowable non-uniform settlement of structures. International Society for Soil Mechanics and Geotechnical Engineering. 1957, vol. 1, рр. 402— 405.
43. Vasenin V. A. Modern geotechnologies in construction and their R&D support. Sovremennye geotekhnologii v stroitel'stve i ikh nauchno-tekhnicheskoe soprovozhdenie: Sbornik mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy 80-letiyu obrazovaniya kafedry geotekhniki SPbGASU (mekhaniki gruntov, osnovaniy i fundamentov LISI) i 290-letiyu rossiyskoy nauki [Proceedings of the International Scientific and Practical Conference dedicated to the 80th anniversary of the Department of Geotechnics (Department of Foundation and Soil Engineering of the Leningrad Civil Engineering Institute) and the 290th anniversary of the Russian science], 2014, pp. 20—26. [In Russ].
44. Konyukhov D. S. Safety of existing buildings during underground mining. MIAB. Mining Inf. Anal. Bull. 2022, no. 8, pp. 158—167. [In Russ]. DOI: 10.25018/0236_1493_2022_8_ 0_158.
45. Kulikova E. Yu., Konyukhov D. S. Accident risk monitoring in underground space development. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 97—103. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_97.
46. Dashko R. E., Lokhmatikov G. A. The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis. Journal of Mining Institute. 2022, vol. 254, pp. 180—190. [In Russ]. DOI: 10.31897/ PMI.2022.13.
47. Khatum Kh. M., Mustafin M. G. Optimization of the location of robotic stations for observing deformations of buildings and structures. Geodesy and Cartography. 2020, vol. 81, pp. 2—13. [In Russ]. DOI: 10.22389/0016-7126-2020-963-9-2-13.
48. Valkov V. A., Vinogradov K. P., Valkova E. O., Mustafin M. G. Creating highly informative rasters based on laser scanning and aerial photography data. Geodesy and Cartography. 2022, vol. 83, pp. 40—49. [In Russ]. DOI: 10.22389/0016-7126-989-11-40-49.