Reliability of ground surface movement prediction in construction of stationary facilities in deep subways

Reliability of calculation methods of ground surface movement in construction of large-size tunnels in deep subways is assessed. In the context of protection and guard of buildings, structures and the other surface infrastructure in towns and cities from the adverse effect of mining operations in subway construction, reliability of deformation prediction is a critical issue. With the expanding practice of using exclusively numerical methods in predictions in the latest decade, accuracy and reliability of deformation predictions using these methods as compared with the conventional empirical and analytical approaches become the top-priority challenge, while it lacks comprehensive research. The main conventional empirical and analytical–empirical prediction techniques are compared with the numerical modeling method. The analysis of calculation tools and prediction results reveals the benefits and disbenefits of these estimation methods of displacements and deformations. It shown that levels of deformations strongly depend on the actual process variables. Reliability of the conventional methods depends on the so-called empirical coefficients, which adjust calculations for specific tunneling conditions, and on the insufficient elaboration of apparatus of calculations and estimation of their results. For the numerical methods having high potential computational capacities, it is demonstrated that they also have limitations and their results depend on the involved models of environment and their input characteristics which are impossible to evaluate correctly on a laboratory scale. The recommendations on the selection and correction of the prediction methods and approaches are formulated.

Keywords: subsidence trough, displacement and deformation prediction, analytical–empirical procedures, numerical modeling, building protection, subway construction, stationary facilities, great depth.
For citation:

Volokhov E. M., Britvin I. A., Kozhukharova V. K. Reliability of ground surface movement prediction in construction of stationary facilities in deep subways. MIAB. Mining Inf. Anal. Bull. 2024;(5):36-61. [In Russ]. DOI: 10.25018/0236_1493_2024_5_0_36.

Issue number: 5
Year: 2024
Page number: 36-61
ISBN: 0236-1493
UDK: 622.83
DOI: 10.25018/0236_1493_2024_5_0_36
Article receipt date: 09.01.2024
Date of review receipt: 05.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2024
About authors:

E.M. Volokhov1, Cand. Sci. (Eng.), Associate Professor, e-mail:, ORCID ID: 0000-0003-4430-4172,
I.A. Britvin1, PhD Student, e-mail:, ORCID ID: 0000-0002-1561-0835,
V.K. Kozhukharova1, PhD Student, e-mail:, ORCID ID: 0009-0008-0705-3646,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia


For contacts:

I.A. Britvin, e-mail:


1. Limanov Yu. A. Osadki zemnoy poverkhnosti pri sooruzhenii tonneley v kembriyskikh glinakh [Surface settlements induced by tunneling in Cambrian clays], Leningrad, 1957, 239 p.

2. Podakov V. F., Solov'ev Yu. F., Kapustin V. M., Muller R. A., Ovsyanko E. A., Shagalov S. E. Posobie po proektirovaniyu meropriyatiy dlya zashchity ekspluatiruemykh zdaniy i sooruzheniy ot vliyaniya gornoprokhodcheskikh rabot pri stroitel'stve metropolitena [Manual for designing measures to protect exploited buildings and structures from excavation influence during subway construction], Leningrad, Stroyizdat, 1973, 72 p.

3. Khutskiy V. P. Methodology for predicting surface settlements and deformations due to subway tunnels construction. Sbornik nauchnykh trudov OAO «VNIIgalurgii». T. 1. [Collection of scientific papers of JSC «VNII Galurgii», vol. 1], 2001, pp. 65—79.

4. Volokhov E. M. Prognoz sdvizheniy i deformatsiy massiva gornykh porod i zemnoy poverkhnosti pri sooruzhenii gorodskikh tonneley glubokogo zalozheniya [Prediction of rock mass movements and deformations due to deep-laid tunnels construction], Candidate’s thesis, Saint-Petersburg, SPbGU, 2004, 23 p.

5. Peck R. B. Deep excavations and tunnelling in soft ground. Proceedings of the 7th International Conference on Soft Mechanics and Foundation Engineering, Mexico City, Mexico, 1969, pp. 225—290.

6. Attewell P. B., Woodman J. P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Engineering. 1982, vol. 15, no. 8, pp. 13—20. DOI: 10.1016/01489062(83)90142-0.

7. O’Reilly M. P., New B. M. Settlements above tunnels in the United Kingdom — their magnitude and prediction. Tunnelling 82, Proceedings of the 3rd International Symposium, Brighton, UK. 1982, pp. 173—181. DOI: 10.1016/0148-9062(83)91768-0.

8. Rankin W. J. Ground movements resulting from urban tunnelling: predictions and effects. Geological Society, London, Engineering Geology Special Publications. 1988, vol. 5, no. 1, pp. 79—92. DOI: 10.1144/gsl.eng.1988.005.01.06.

9. Protosenya А. G., Alekseev А. V., Verbilo P. E. Prediction of the stress-strain state and stability of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022, vol. 254, pp. 252—260. [In Russ]. DOI: 10.31897/PMI.2022.26.

10. Nguyen T. T., Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behavior. Proceedings of the Institution of Civil Engineers — Geotechnical Engineering. 2021, vol. 174, no. 4, pp. 355—371. DOI: 10.1680/jgeen.20.00057.

11. Trushko O. V., Trushko V. L., Demenkov P. A. Construction of underground and multi-story car parks in high-density urban areas. International Journal of Engineering, Transactions B: Applications. 2024, vol. 37, no. 02, pp. 224—236. DOI: 10.5829/IJE.2024.37.02B.02.

12. Franco V. H., Gitirana G. D. F. N., de Assis A. P. Probabilistic assessment of tunneling-induced building damage. Computers and Geotechnics. 2019, vol. 113, arcticle 103097. DOI: 10.1016/j. compgeo.2019.103097.

13. Yang H., Liu F., Lin S. Investigation on the 3D ground settlements induced by shallow tunneling considering the effects of buildings. KSCE Journal of Civil Engineering. 2020, vol. 24, pp. 365—376. DOI: 10.1007/s12205-020-2201-9.

14. Salahudeen A. B., Yisa G. L. Settlement, slope stability and seepage analyses by numerical modelling method and their applications in practice. Nigerian Journal of Technology. 2023, vol. 42, no. 3, pp. 306—314. DOI: 10.4314/njt.v42i3.2.

15. Son M., Cording E. J. Estimation of building damage due to excavation-induced ground movements. Journal of Geotechnical and Geoenvironmental Engineering. 2005, vol. 131, no. 2, pp. 162—177. DOI: 10.1061/(ASCE)1090-0241(2005)131:2(162).

16. Kuznetsov G. N. Experimental methods for studying rock pressure. Trudy soveshchaniya po upravleniyu gornym davleniem [Proceedings of the meeting on rock pressure control], Moscow, Ugletekhizdat, 1948, pp. 9—149.

17. Fang Q., Liu X., Zeng K., Zhang X., Zhou M., Du J. Centrifuge modelling of tunnelling below existing twin tunnels with different types of support. Underground Space. 2022, vol. 7, no. 6, pp. 1125—1138. DOI: 10.1016/j.undsp.2022.02.007.

18. Song G., Marshall A. M. Tunnel—piled structure interaction: numerical simulation of hybrid centrifuge tests. Computers and Geotechnics. 2021, vol. 140, article 104477. DOI: 10.1016/j.compgeo. 2021.104477.

19. Ritter S., Giardina G., Franza A., DeJong M. J. Building deformation caused by tunneling: Centrifuge modeling. Journal of Geotechnical and Geoenvironmental Engineering. 2020, vol. 146, article 04020017. DOI: 10.1061/(ASCE)GT.1943-5606.0002223.

20. Dashko R. E., Lokhmatikov G. A. The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis. Journal of Mining Institute. 2022, vol. 254, pp. 180—190. [In Russ]. DOI: 10.31897/PMI.2022.13.

21. Shirlaw J. N., Boone S. J. Discussion: A study on large volume losses induced by EBPM tunnelling in sandy soils. Tunnelling and Underground Space Technology. 2023, vol. 142, article 105424. DOI: 10.1016/j.tust.2023.105424.

22. Kolivand F., Rahmannejad R. Determination of settlement trough width and optimization of soil behavior parameters based on the design of experiment method (DOE). International Journal of Mining and Geo-Engineering. 2018, vol. 52, no. 1, pp. 7—15. DOI: 10.22059/ijmge.2017.240572.594693.

23. Mair R. J., Taylor R. N. Theme lecture: Bored tunneling in the urban environment. Proceedings of the 14th International Conference on Soft Mechanics and Foundation Engineering, Hamburg, Germany. 1997, pp. 2353—2385.

24. Demeshko E. A., Khodosh V. A. Prediction of surface settlements induced by shield tunneling in sand. Metrostroy. 1963, no. 3-4, pp. 50—53. [In Russ].

25. Avershin S. G. Sdvizhenie gornykh porod pri podzemnykh razrabotkakh [Rock mass movement response to underground excavation], Moscow, Ugletekhizdat, 1947, 245 p.

26. Chang Y., Chang L., Ren F. Strength anisotropy of jointed rock slope considering mining damage: a numerical analysis method. Geomatics, Natural Hazards and Risk. 2020, vol. 11, no. 1, pp. 2587— 2614. DOI: 10.1080/19475705.2020.1856200.

27. Do N. A., Dias D., Dinh V. D., Tran T. T., Dao V. C., Dao V. D., Nguyen P. N. Behavior of noncircular tunnels excavated in stratified rock masses — Case of underground coal mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 1, pp. 99—110. DOI: 10.1016/j. jrmge.2018.05.005.

28. Zhang Z., Chen Y., Han K., Wei G., Pan Y., Sun M. Mathematical modelling for interaction between soft ground and small curvature shield tunneling considering viscoelastic characteristics influences. Applied Mathematical Modelling. 2024, vol. 127, pp. 607—639. DOI: 10.1016/j.apm.2023.12.020.

29. Wang Z., Guo W., Ding W., Liu K., Qin W., Wang C., Wang Z. Numerical study on the hydrodynamic properties of bentonite slurries with Herschel-Bulkley-Papanastasiou rheology model. Powder Technology. 2023, vol. 419, article 118375. DOI: 10.1016/j.powtec.2023.118375.

30. Volokhov E. M., Kireeva V. I. Analysis of the results of field studies of geomechanical processes in construction of large transport tunnels with the use of a mechanized tunnelboring complex with work face earth pressure balance in the special conditions. ARPN Journal of Engineering and Applied Sciences. 2017, vol. 12, no. 20, pp. 5811—5821. DOI: rp_2017/jeas_1017_6425.

31. Marshall A. M., Farrell R. P., Klar A., Mair R. J. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements. Géotechnique. 2012, vol. 62, no. 5, pp. 385—399. DOI: 10.1680/geot.10.P.047.

32. Dolgikh M. V. Sdvizhenie zemnoy poverkhnosti pri stroitel'stve ob"ektov metropolitena SanktPeterburga [Surface movement response to subway construction], Candidate’s thesis, Saint-Petersburg, SPbGU, 1999, 20 p.

33. Jacobsz S. W., Standing J. R., Mair R. J., Hagiwara T., Sugiyama T. Centrifuge modelling of tunnelling near driven piles. Soils and Foundations. 2004, vol. 44, no. 1, pp. 49—56. DOI: 10.3208/ sandf.44.49.

34. Song Z. P., Tian X. X., Zhang Y. W. A new modified Peck formula for predicting the surface settlement based on stochastic medium theory. Advances in Civil Engineering. 2019, vol. 2019, article 7328190. DOI: 10.1155/2019/7328190.

35. Verruijt A., Booker J. R. Surface settlements due to deformation of a tunnel in an elastic half plane. Géotechnique. 1996, vol. 46, no. 4, pp. 753—756. DOI: 10.1680/geot.1996.46.4.753.

36. Sagaseta C. Analysis of undrained soil deformation due to ground loss. Géotechnique. 1987, vol. 37, no. 3, pp. 301—320. DOI: 10.1680/geot.1987.37.3.301.

37. Loganathan N., Poulos H. G. Analytical prediction for tunnelling-induced ground movements in clays. Journal of Geotechnical and Geoenvironmental Engineering. 1998, vol. 124, no. 9, pp. 846— 856. DOI: 10.1061/(ASCE)1090-0241(1998)124:9(846).

38. Park K. H. Analytical solution for tunneling-induced ground movement in clays. Tunnelling and Underground Space Technology. 2005, vol. 20, no. 3, pp. 249—261. DOI: 10.1016/j.tust.2004.08.009.

39. Lebedev M. O., Karasev M. A., Belyakov N. A., Basova L. A. Face stability in heavy clay: Theory and practice. Journal of Mining Science. 2022, vol. 58, pp. 234—245. DOI: 10.1134/ S1062739122020077.

40. Li D., Yan C. Building deformation prediction based on ground surface settlements of metro-station deep excavation. Advances in Civil Engineering. 2018, vol. 2018, article 6050353. DOI: 10.1155/2018/6050353.

41. Falbe-Hansen K., Paulatto E., Arce Juliao I. Monitoring cityringen metro project in Copenhagen, Denmark. Proceedings of the Institution of Civil Engineers — Civil Engineering. 2018, vol. 171, no. 5, pp. 39—47. DOI: 10.1680/jcien.17.00024.

42. Novozhenin S. U. Evaluation of the trough boundaries of escalator tunnel construction using TBM in Saint-Petersburg. Mine Surveying Bulletin. 2015, no. 3, pp. 54—57. [In Russ].

43. Verbilo P. E., Vilner M. A. Study of the jointed rock mass uniaxial compression strength anisotropy and scale effect. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 47—59. [In Russ]. DOI: 10.25 018/0236_1493_2022_62_0_47.

44. Козловский Е. Я., Журавков М. А. Определение и верификация параметров расчетной модели соляных пород с учетом разупрочнения и ползучести. Journal of Mining Institute. 2021, vol. 247, pp. 33—38. [In Russ]. DOI: 10.31897/PMI.2021.1.4.

45. Miliziano S., Caponi S., Carlaccini D., Lillis A. Prediction of tunnelling-induced effects on a historic building in Rome. Tunnelling and Underground Space Technology. 2022, vol. 119, article 104212. DOI: 10.1016/j.tust.2021.104212.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.