Problems of carbon dioxide leakage from geological storage

The article discusses the main problems of carbon dioxide leakage from geological storages and possible solutions to eliminate them. One of the main task of carbon capture and storage technologies, in addition to finding suitable geological reservoirs and injecting carbon dioxide into them, is to ensure the stability of storage facilities and prevent their leakproofness. The risks associated with the destruction of carbon-containing rocks are the reasons for the loss of tightness of potential geological storages. Constant monitoring of the state of boreholes after the process of gas injection and closing with cement mixtures minimizes the risks of CO2 leakage. To retain carbon dioxide by storage rocks, it is proposed to increase the permeability of rocks based on the injection of CO2 under pressure, which requires a deep study of the choice of reservoirs for storage and the issues of their deformation and destruction in the supercritical state. Not only deep salt deposits, depleted oil and gas reservoirs, oil and gas shales, but also undeveloped coal seams are considered as potential geological storages. The ability of shale and coal to absorb and retain carbon dioxide in pores may be the best solution to eliminate CO2 leaks from geological storages.

Keywords: carbon dioxide, injection process, geological storage, rock failure, loss of containment, leakage, carbon capture and storage technology, property change.
For citation:

Kossovich E. L., Andreeva Y. E., Gavrilova D. I., Epshtein S. A., Dobryakova N. N. Problems of carbon dioxide leakage from geological storage. MIAB. Mining Inf. Anal. Bull. 2022;(12):46-54. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_46.

Acknowledgements:

The authors acknowledge financial support by the Ministry of Science and Higher Education of the Russian Federation (Theme no. 121112200078-7).

Issue number: 12
Year: 2022
Page number: 46-54
ISBN: 0236-1493
UDK: 62-4+62-94+621.6
DOI: 10.25018/0236_1493_2022_12_0_46
Article receipt date: 25.09.2022
Date of review receipt: 28.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

E.L. Kossovich1, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail: e.kossovich@misis.ru,
Y.E. Andreeva1, Student, Laboratory Assistant and Investigator,
D.I. Gavrilova1, Cand. Sci. (Eng.), Junior Researcher, e-mail: gavrilova4049@mail.ru,
S.A. Epshtein1, Dr. Sci. (Eng.), Senior Researcher, Head of Laboratory, e-mail: apshtein@yandex.ru,
N.N. Dobryakova1, Cand. Sci. (Eng.), Researcher,
1 Scientific-Educational Testing Laboratory of Physics and Chemistry of Coals, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

S.A. Epshtein, e-mail: apshtein@yandex.ru

Bibliography:

1. Dooley J. J. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st century. A meta-analysis of the literature. Energy Procedia. 2013, vol. 37, pp. 5141—5150. DOI: 10.1016/j.egypro.2013.06.429.

2. Tadjer A., Hong A., Bratvold R. B. A sequential decision and data analytics framework for maximizing value and reliability of CO2 storage monitoring. Journal of Natural Gas Science and Engineering. 2021, vol. 96, article 104298. DOI: 10.1016/j.jngse.2021.104298.

3. Arts R., Eiken O., Chadwick A., Zweigel P., van der Meer L., Zinszner B. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy. 2004, vol. 29, no. 9-10, pp. 1383—1392. DOI: 10.1016/j.energy.2004.03.072.

4. Furre A. K., Eiken O., Alnes H., Vevatne J. N., Kiær A. F. 20 years of monitoring CO2injection at Sleipner. Energy Procedia. 2017, vol. 114, pp. 3916—3926. DOI: 10.1016/j.egypro.2017.03.1523.

5. Grimstad A. A., Georgescu S., Lindeberg E., Vuillaume J. F. Modelling and Simulation of mechanisms for leakage of CO2 from geological storage. Energy Procedia. 2009, vol. 1, no. 1, pp. 2511—2518. DOI: 10.1016/j.egypro.2009.02.014.

6. Loschetter A., De Lary De Latour L., Grandia F., Powaga E., Collignan B., Marcoux M., Davarzani H., Bouc O., Le Guenan T. Assessment of CO2 health risk in indoor air following a leakage from a geological storage: Results from the first representative scale experiment. Energy Procedia. 2017, vol. 114, pp. 4287—4302. DOI: 10.1016/j.egypro.2017.03.1573.

7. Stenhouse M., Arthur R., Zhou W. Assessing environmental impacts from geological CO2 storage. Energy Procedia. 2009, vol. 1, no. 1, pp. 1895—1902. DOI: 10.1016/j.egypro. 2009.01.247.

8. Gholami R., Raza A., Iglauer S. Leakage risk assessment of a CO2 storage site. A review.

Earth-Science Reviews. 2021, vol. 223, article 103849. DOI: 10.1016/j.earscirev.2021.103849.

9. Carroll S., Carey J. W., Dzombak D., Huerta N. J., Li L., Richard T., Um W., Walsh S. D. C., Zhang L. Review: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments. International Journal of Greenhouse Gas Control. 2016, vol. 49, pp. 149—160. DOI: 10.1016/j.ijggc.2016.01.010.

10. Smith S., Sorensen J., Steadman E., Harju J., Ryan D. Zama Acid Gas EOR, CO2 Sequestration, and Monitoring Project. Energy Procedia. 2011, vol. 4, pp. 3957—3964. DOI: 10.1016/j. egypro.2011.02.335.

11. Rosenbauer R. J., Thomas B. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations. Developments and Innovation in Carbon Dioxide Capture and Storage Technology, vol. 2. 2010, pp. 57—103. DOI: 10.1533/9781845699581.1.57.

12. Ferronato M., Gambolati G., Janna C., Teatini P. Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields. Energy Conversion and Management. 2010, vol. 51, no. 10, pp. 1918—1928. DOI: 10.1016/j.enconman.2010.02.024.

13. Bunin A. V., Shirochin D. L., Epshtein S. A. Deformations of fossil coals on swelling in an atmosphere of carbon dioxide. Solid Fuel Chemistry. 2014, no. 5, pp. 9—12. [In Russ].

14. Epshtein S. A., Kossovich E. L., Prosina V. A., Dobryakova N. N. Features of sorption-induced strength degradation of coals originated from potentially prone to outburst and non-hazardous packs. Gornyi Zhurnal. 2018, no. 12, pp. 18—22. [In Russ]. DOI: 10.17580/ gzh.2018.12.04.

15. Dymochkina M. G., Samodurov M. S., Pavlov V. A., Penigin A. V., Ushmaev O. S. Geological potential of carbon dioxide capture and storage of the Russian Federation. Neftyanoe khozyaystvo. 2021, no. 12, pp. 20—23. [In Russ]. DOI: 10.24887/0028-2448-2021-12-20-23.

16. Pereverzeva S. A., Konosavskii P. K., Tudvachev A. V., Harhordin I. L. Burial of industrial sources of carbon dioxide in organic structures. Vestnik of Saint Petersburg University. Series 7. Geology. Geography. 2014, no. 1, pp. 5—21. [In Russ].

17. Kossovich E. L., Epshtein S. A., Borodich F. M., Dobryakova N. N., Prosina V. A. Connections between micro/nano scale heterogeneity of mechanical properties of coals and their propensity to outbursts and crushing. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 156—172. [In Russ]. DOI: 10.25018/02361493-2019-05-0-156-172.

18. Zhang Y., Lebedev M., Al-Yaseri A., Yu H., Xu X., Sarmadivaleh M., Barifcani A., Iglauer S. Nanoscale rock mechanical property changes in heterogeneous coal after water adsorption. Fuel. 2018, vol. 218, pp. 23—32. DOI: 10.1016/j.fuel.2018.01.006.

19. Sidorova K. N., Cherepovicin A. E. Assessment of the possibilities of carbon dioxide burial in geological reservoirs. Neftegazovaya Geologiya. Teoriya i Praktika. 2013, vol. 8, no. 4, pp. 11. [In Russ]. DOI: 10.17353/2070-5379/47_2013.

20. Zhang C. P., Liu S., Ma Z. Y., Ranjith P. G. Combined micro-proppant and supercritical carbon dioxide (SC-CO2) fracturing in shale gas reservoirs. A review. Fuel. 2021, vol. 305, article 121431. DOI: 10.1016/j.fuel.2021.121431.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.