Bibliography: 1. Filippov, S. P., Dil’man, M. D., Ionov, M. S. (2017). Demand of the power industry of Russia for gas turbines: the current state and prospects, Thermal Engineering, 64, 829−840. DOI: 10.1134/S0040601517110052.
2. Aust, J., Pons, D. (2019). Taxonomy of Gas Turbine Blade Defects. Aerospace, 6(5), 58. DOI: 10.3390/aerospace6050058.
3. Kanagaraja, K., Jegadeeswari, G., Kirubadurai, B. (2019). Optimization of Gas Turbine Blade Cooling System. International Journal of Innovative Technology and Exploring Engineering, 8(11), 4176−4181. DOI: 10.35940/ijitee.K2163.0981119.
4. Sharma, C., Kumar, S., Singh, A., et al. (2021). Comprehensive Review on Leading Edge Turbine Blade Cooling Technologies. International Journal of Heat and Technology, 39(2), 403−416. DOI: 10.18280/ijht.390209.
5. Fan, X., Li, L., Zou, J., et al. (2018). Local heat transfer of vortex cooling with multiple tangential nozzles in a gas turbine blade leading edge cooling passage. International Journal of Heat and Mass Transfer, 126(B), 377−389. DOI: 10.1016/j.ijheatmasstransfer.2018.06.018.
6. Melzer, A., Pullan, G. (2018). The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades. Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 2B: Turbomachinery, V02BT41A013. DOI: 10.1115/GT2018−75707.
7. Langston, L. S. (2021). Bright Fortunes. Mechanical Engineering, 143(4), 46−51. DOI: 10.1115/1.2021-JUL3.
8. Siegel, R. P. (2019). What’s the Deal with Graphene? Mechanical Engineering, 141(09), 42−47. DOI: 10.1115/1.2019-SEP2.
9. Segundo, E. H., Fontana, L. C., Recco, A. A., et al. (2018). Graphene nanosheets obtained through graphite powder exfoliation in pulsed underwater electrical discharge. Materials Chemistry and Physics, 217, 1−4. DOI: 10.1016/j.matchemphys.2018.06.036.
10. Gautier, G., Priarone, P., Rizzuti, S., et al. (2015). A Contribution on the Modelling of Wire Electrical Discharge Machining of a γ-TiAl Alloy. Procedia CIRP, 31, 203−208. DOI: 10.1016/j.procir.2015.03.019.
11. Pham, T. T., Huynh, T. H., Do, Q. H., et al. (2019). Optimum reproduction and characterization of graphene on copper foils by low pressure chemical vapor deposition. Materials Chemistry and Physics, 224, 286−292. DOI: 10.1016/j.matchemphys.2018.12.009.
12. Wang, C., Li, Z., Zhao, H., et al. (2020). Enhanced anticorrosion and antiwear properties of Ti–6Al–4V alloys with laser texture and graphene oxide coatings. Tribology International, 152, 106475. DOI: 10.1016/j.triboint.2020.106475.
13. Joseph, A., Kirubasankar, B., Mathew, A., et al. (2021). Influence of pulse reverse current parameters on electrodeposition of copper-graphene nanocomposite coating. Applied Surface Science Advances, 5, 100116. DOI: 10.1016/j.apsadv.2021.100116.
14. Zhang, H., Ma, Q., Wang, Y., et al. (2019). Improved corrosion resistance of copper coated by graphene. New Carbon Materials, 34(2), 153−160. DOI: 10.1016/ S1872−5805(19)60008−9.
15. Pradhan, S., Sahoo, M., Ratha, S., et al. (2020). Graphene-incorporated aluminum with enhanced thermal and mechanical properties for solar heat collectors. AIP Advances, 10, 065016. DOI: 10.1063/5.0008786.
16. Moskalenko, A. B., Kozhevnikov, A. I. (2016). Estimation of Gas Turbine Blades Cooling Efficiency. Procedia Engineering, 150, 61−67. DOI: 10.1016/j.proeng.2016.06.716.
17. Jordal, K., Assadi, M., Genrup, M. (2002). Variations in Gas-Turbine Blade Life and Cost due to Compressor Fouling — A Thermoeconomic Approach. International Journal of Thermodynamics, 5(1), 37−47.
18. Tcvetkov, P., Cherepovitsyn, A., & Fedoseev, S. (2019). The Changing Role of CO2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects. Sustainability, 11(20), 5834. DOI: 10.3390/su11205834.
19. Dvoynikov, M., Buslaev, G., Kunshin, A., Sidorov, D., Kraslawski, A., & Budovskaya, M. (2021). New Concepts of Hydrogen Production and Storage in Arctic Region. Resources, 10(1), 3. DOI: 10.3390/resources10010003.
20. Blinova, E., Ponomarenko, T., Knysh, V. (2022). Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy. Sustainability (Switzerland), 14(13), 8163. DOI: 10.3390/ su14138163.
21. Nedosekin, A. O., Rejshahrit, E. I., Kozlovskiy, A. N. (2019). Strategic approach to assessing economic sustainability objects of mineral resources sector of Russia. Journal of Mining Institute, 237, 354−360. DOI: 10.31897/PMI.2019.3.354.
22. Shabalov, M. Y., Zhukovskiy, Y. L., Buldysko, A. D., Gil, B., & Starshaia, V. V. (2021). The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Reports, 7, 2664−2680. DOI: 10.1016/j.egyr.2021.05.001.
23. Zhukovskiy, Y., Tsvetkov, P., Buldysko, A., et al. (2021). Scenario modeling of sustainable development of energy supply in the Arctic. Resources, 10(12), 124. DOI: 10.3390/resources10120124.
24. Dmitrieva, D., Cherepovitsyna, A., Stroykov, G., et al. (2022). Strategic sustainability of offshore arctic oil and gas projects: Definition, principles, and conceptual framework. Journal of Marine Science and Engineering, 10(1), 23. DOI: 10.3390/jmse10010023.
25. Blinova, E., Ponomarenko, T., Knysh, V. (2022). Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy. Sustainability (Switzerland), 14(13), 8163. DOI: 10.3390/ su14138163