Extending the service life of gas turbine power plants used at mineral deposits

This article deals with the issue of improving the reliability of gas turbine engines (GTEs) and extending their service life. GTEs are used as power generators at mineral deposits. For this purpose, a unique turbulator for the turbine blade design is presented with the results of an aerodynamic experiment and a CFD simulation of the flow through a spiral turbulator. The results are compared. The design of the cooling turbine blade with a spiral turbulator includes the use of graphene as a construction material, a revolutionary material of the 21st century with a large cooling capacity. Promising ways of obtaining such a turbulator the purpose of turbine cooling are considered. The spirals can be effectively used in situations where it is necessary to turbulize the air or decrease the flow pressure.

Keywords: turbine, cooling system, gas turbine engine, blade.
For citation:

Dehian R. R., Belova S. Ye. Extending the service life of gas turbine power plants used at mineral deposits. MIAB. Mining Inf. Anal. Bull. 2022;(10-2):135—146. [In Russ]. DOI: 10. 25018/0236_1493_2022_102_0_135.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 135-146
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_102_0_135
Article receipt date: 20.03.2022
Date of review receipt: 15.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Belova S. Ye.1, Cand. Sci. (Eng.), Docent, e-mail: belova_se@mail.ru, ORCID ID: 0000-0002-2740-7009;
Dehian R. R.1, master’s student, e-mail: ronaldodehian@yahoo.com, ORCID ID: 0000-0002-4211-0457;
1 Rybinsk State Aviation Technical University named after PA Solovyov, 152934, Rybinsk, Russia.

 

For contacts:

Belova S. Ye., e-mail: belova_se@mail.ru.

Bibliography:

1. Filippov, S. P., Dil’man, M. D., Ionov, M. S. (2017). Demand of the power industry of Russia for gas turbines: the current state and prospects, Thermal Engineering, 64, 829−840. DOI: 10.1134/S0040601517110052.

2. Aust, J., Pons, D. (2019). Taxonomy of Gas Turbine Blade Defects. Aerospace, 6(5), 58. DOI: 10.3390/aerospace6050058.

3. Kanagaraja, K., Jegadeeswari, G., Kirubadurai, B. (2019). Optimization of Gas Turbine Blade Cooling System. International Journal of Innovative Technology and Exploring Engineering, 8(11), 4176−4181. DOI: 10.35940/ijitee.K2163.0981119.

4. Sharma, C., Kumar, S., Singh, A., et al. (2021). Comprehensive Review on Leading Edge Turbine Blade Cooling Technologies. International Journal of Heat and Technology, 39(2), 403−416. DOI: 10.18280/ijht.390209.

5. Fan, X., Li, L., Zou, J., et al. (2018). Local heat transfer of vortex cooling with multiple tangential nozzles in a gas turbine blade leading edge cooling passage. International Journal of Heat and Mass Transfer, 126(B), 377−389. DOI: 10.1016/j.ijheatmasstransfer.2018.06.018.

6. Melzer, A., Pullan, G. (2018). The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades. Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 2B: Turbomachinery, V02BT41A013. DOI: 10.1115/GT2018−75707.

7. Langston, L. S. (2021). Bright Fortunes. Mechanical Engineering, 143(4), 46−51. DOI: 10.1115/1.2021-JUL3.

8. Siegel, R. P. (2019). What’s the Deal with Graphene? Mechanical Engineering, 141(09), 42−47. DOI: 10.1115/1.2019-SEP2.

9. Segundo, E. H., Fontana, L. C., Recco, A. A., et al. (2018). Graphene nanosheets obtained through graphite powder exfoliation in pulsed underwater electrical discharge. Materials Chemistry and Physics, 217, 1−4. DOI: 10.1016/j.matchemphys.2018.06.036.

10. Gautier, G., Priarone, P., Rizzuti, S., et al. (2015). A Contribution on the Modelling of Wire Electrical Discharge Machining of a γ-TiAl Alloy. Procedia CIRP, 31, 203−208. DOI: 10.1016/j.procir.2015.03.019.

11. Pham, T. T., Huynh, T. H., Do, Q. H., et al. (2019). Optimum reproduction and characterization of graphene on copper foils by low pressure chemical vapor deposition. Materials Chemistry and Physics, 224, 286−292. DOI: 10.1016/j.matchemphys.2018.12.009.

12. Wang, C., Li, Z., Zhao, H., et al. (2020). Enhanced anticorrosion and antiwear properties of Ti–6Al–4V alloys with laser texture and graphene oxide coatings. Tribology International, 152, 106475. DOI: 10.1016/j.triboint.2020.106475.

13. Joseph, A., Kirubasankar, B., Mathew, A., et al. (2021). Influence of pulse reverse current parameters on electrodeposition of copper-graphene nanocomposite coating. Applied Surface Science Advances, 5, 100116. DOI: 10.1016/j.apsadv.2021.100116.

14. Zhang, H., Ma, Q., Wang, Y., et al. (2019). Improved corrosion resistance of copper coated by graphene. New Carbon Materials, 34(2), 153−160. DOI: 10.1016/ S1872−5805(19)60008−9.

15. Pradhan, S., Sahoo, M., Ratha, S., et al. (2020). Graphene-incorporated aluminum with enhanced thermal and mechanical properties for solar heat collectors. AIP Advances, 10, 065016. DOI: 10.1063/5.0008786.

16. Moskalenko, A. B., Kozhevnikov, A. I. (2016). Estimation of Gas Turbine Blades Cooling Efficiency. Procedia Engineering, 150, 61−67. DOI: 10.1016/j.proeng.2016.06.716.

17. Jordal, K., Assadi, M., Genrup, M. (2002). Variations in Gas-Turbine Blade Life and Cost due to Compressor Fouling — A Thermoeconomic Approach. International Journal of Thermodynamics, 5(1), 37−47.

18. Tcvetkov, P., Cherepovitsyn, A., & Fedoseev, S. (2019). The Changing Role of CO2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects. Sustainability, 11(20), 5834. DOI: 10.3390/su11205834.

19. Dvoynikov, M., Buslaev, G., Kunshin, A., Sidorov, D., Kraslawski, A., & Budovskaya, M. (2021). New Concepts of Hydrogen Production and Storage in Arctic Region. Resources, 10(1), 3. DOI: 10.3390/resources10010003.

20. Blinova, E., Ponomarenko, T., Knysh, V. (2022). Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy. Sustainability (Switzerland), 14(13), 8163. DOI: 10.3390/ su14138163.

21. Nedosekin, A. O., Rejshahrit, E. I., Kozlovskiy, A. N. (2019). Strategic approach to assessing economic sustainability objects of mineral resources sector of Russia. Journal of Mining Institute, 237, 354−360. DOI: 10.31897/PMI.2019.3.354.

22. Shabalov, M. Y., Zhukovskiy, Y. L., Buldysko, A. D., Gil, B., & Starshaia, V. V. (2021). The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Reports, 7, 2664−2680. DOI: 10.1016/j.egyr.2021.05.001.

23. Zhukovskiy, Y., Tsvetkov, P., Buldysko, A., et al. (2021). Scenario modeling of sustainable development of energy supply in the Arctic. Resources, 10(12), 124. DOI: 10.3390/resources10120124.

24. Dmitrieva, D., Cherepovitsyna, A., Stroykov, G., et al. (2022). Strategic sustainability of offshore arctic oil and gas projects: Definition, principles, and conceptual framework. Journal of Marine Science and Engineering, 10(1), 23. DOI: 10.3390/jmse10010023.

25. Blinova, E., Ponomarenko, T., Knysh, V. (2022). Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy. Sustainability (Switzerland), 14(13), 8163. DOI: 10.3390/ su14138163

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.