Forecast of dynamic phenomena in coal mines with regard to hierarchical structure of rock mass and sorption properties of coals

The aim of our study is to determine the physical properties of selected points of coal seams to predict potentially hazardous zones, in the vicinity of which it is necessary to apply additional technological solutions that guarantee the passage of these zones in a safe mode. Samples obtained in the mines of Donbass, Kuzbass and the Vorkuta coal basin were analyzed. Low-temperature nitrogen adsorption methods, microscopic methods, small-angle neutron scattering and Raman spectroscopy were used. When analyzing the data obtained for microand macroscopic scales, the concept of self-organized criticality was used. The results of the study allowed us to conclude that the combined use of geodynamic zoning methods and physical methods for analyzing the structural organization of coals at the micro level is effective in predicting the sources of origin and initiation of gas-dynamic phenomena. Small-angle neutron scattering and Raman spectroscopy have proven to be the most sensitive for characterizing the structural features and methane capacity of the pore space of coals extracted from coal seam sections with varying degrees of stress-strain state. Tectonically loaded zones differ from unloaded zones by the parameters of the fractal dimension, which characterize the hierarchical (power) distribution of pores by size.

Keywords: dynamic phenomena, geodynamic zoning, block structure, stress state, gas content, porosity, fracturing, fractal dimension, coal seams.
For citation:

Vasilenko T. A., Kirillov A. K., Islamov A. Kh., Doroshkevich A. S., Novikova V. N. Forecast of dynamic phenomena in coal mines taking into account the hierarchical organization of the rock mass and sorption properties of fossil coals. MIAB. Mining Inf. Anal. Bull. 2025;(1-1):47-68. [In Russ]. DOI: 10.25018/0236_1493_2025_11_0_47.

Acknowledgements:
Issue number: 1
Year: 2025
Page number: 47-68
ISBN: 0236-1493
UDK: 53.092: 53.096:538.95:622.8:622.02
DOI: 10.25018/0236_1493_2025_11_0_47
Article receipt date: 16.07.2024
Date of review receipt: 06.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.12.2024
About authors:

T.A. Vasilenko1, Dr. Sci. (Eng.), Senior Researcher, Chief Researcher, e-mail: tvasilenko@mal.ru, Scopus Author ID: 57212244174, ORCID ID: 0000-0003-4290-1520,
A.K. Kirillov2, Dr. Sci. (Eng.), Senior Researcher, Leading Researcher, e-mail: kirillov1953@inbox.ru, Scopus Author ID: 55116623400, ORCID ID: 0000-0002-8727-2441,
A.Kh. Islamov2, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail: akhmed.islamov@gmail.com, Scopus Author ID: 35582218200,
A.S. Doroshkevich2, Cand. Sci. (Phys. Mathem.), Senior Researcher, Head of Group, e-mail: doroh@jinr.ru, Scopus Author ID: 12545381500, ORCID ID: 0000-0003-4290-1520,
V.N. Novikova1, Cand. Sci. (Geol. Mineral.), Deputy Scientific Director for Science and Innovation Activities, e-mail: novikova_vn@pers.spmi.ru, Scopus Author ID: 57199401606, ORCID ID: 0000-0002-0217-6531,
1 Empress Catherine II Saint Petersburg Mining University, 199106, Saint Petersburg, Russia,
2 International Intergovernmental Organization Joint Institute for Nuclear Research, 141980, Dubna, Russia.

 

For contacts:

T.A. Vasilenko, e-mail: tvasilenko@mail.ru.

Bibliography:

1. Shuman V. N. The concept of a dynamically unstable geoenvironment and seismoelectro-magnetic noise of the lithosphere. Geophysical journal. 2010, no. 6(32), pp. 101—118. [In Russ]. EDN: ZRSZJP.

2. Genshaft Yu. S. The Earth is an open system: geological and geophysical consequences. Physics of the Solid Earth. 2009, no. 8, pp. 4—12. [In Russ]. EDN: KPTIRZ.

3. Bak P., Tang C., Wiesenfeld K. Self-organized criticality: An explanation of 1/f noise. Physical Review Letters. 1987, vol. 59, pp. 381—384. DOI: 10.1103/PhysRevLett.59.381.

4. Bak P., Tang C. Earthquakes as self-organized criticality. Journal of Geophysical Research. 1989, vol. 94, no. 15, pp. 635—637. DOI: 10.1029/JB094IB11P15635.

5. Mulev S. N., Rukavishnikov G. D., Moroz D. I., Pashkova V. I., Moroz N. E. Monitoring of the stress state by seismic and calculation methods at the mines of JSC Vorkutaugol. Ugol'. 2022, no. 12, pp. 88—93. [In Russ]. DOI: 10.18796/0041-5790-2022-12-88-93.

6. Makarov P. V. Self-organized criticality of deformation processes and prospects for predict-ing failures. Physical mesomechanics. 2010, no. 13(5), pp. 97—112. [In Russ]. EDN: MXQSPZ.

7. Makarov P. V., Smolin I. Yu., Stefanov Yu. P., Kuznetsov P. V., Trubitsyn A. A., Trubitsyna N. V., Voroshilov S. P., Voroshilov Ya. S. Nelineynaya mekhanika geomaterialov i geosred [Nonlinear mechanics of geomaterials and geoenvironments], Novosibirsk, 2007, 235 p.

8. Sidorenko A. A., Dmitriev P. N., Sirenko Yu. G. Predicting methane emissions from multiple gas-bearing coal seams to longwall goafs at russian mines. ARPN Journal of Engineering and Applied Sciences. 2021, vol. 16, no. 85, pp. 851—857. http://www.arpnjournals.org/jeas/research_papers/ rp_2021/jeas_0421_8562.pdf.

9. Naimark O. B. Collective properties of defect ensembles and some nonlinear problems of plasticity and fracture. Physical mesomechanics. 2003, no. 6 (4), pp. 45—72. [In Russ]. EDN: IUCYMX.

10. Barenblatt G. I. Model of nonlocal accumulation of damage. Physical mesomechanics. 2003, no. 6(4), pp. 85—92. [In Russ]. EDN: IUCYNR.

11. Shuman V. N., Kobolev V. P., Starostenko V. I., Burkinsky I. B., Loiko N. P., Zakharov I. G., Yatsuta D. A. Method of analysis of spontaneous electromagnetic emission of the Earth: physical prerequisites, elements of theory, field experiment. Geophysical journal. 2012, no. 34(4), pp. 40—61. [In Russ]. EDN: ZQZWPV.

12. Daniliev S. M., Danilieva N. A., Frid V. I., Mulev S. N. Integration of seismic refraction and fracture-induced electromagnetic radiation methods to assess the stability of the roof in mine-workings minerals. Minerals. 2022, vol. 12, pp. 609—609. DOI: 10.3390/min12050609.

13. Gospodarikov A. P., Revin I. E., Morozov K. V. Composite model for seismic monitoring data analysis during mining operations using the Kukisvumchorr deposit of JSC Apatit as an example. Journal of Mining Institute. 2023, vol. 262, pp. 571—580. [In Russ]. DOI: 10.31897/PMI.2023.9.

14. Shabarov A. N., Dupak Yu. N., Batugin A. S. Tectonically stressed and unloaded zones in the mountain range. Ugol'. 1994, no. 7, pp. 28—30. [In Russ].

15. Kazanin O. I., Sidorenko A. A., Ivanov V. V., Mischo H. N. High productive longwall mining of multiple gassy seams: best practice and recommendations. Acta Montanistica Slovaca. 2022, vol. 27, no. 15, pp. 152—162. DOI: 10.46544/AMS.v27i1.11.

16. Belyakov N. A., Morozov K. V., Emelianov I. A. Methodology for processing field test data to assess the natural stress state of a rock mass using the ring unloading method. Gornyi Zhurnal. 2023, no. 5, pp. 89—96. [In Russ]. DOI: 10.17580/gzh.2023.05.13.

17. Takranov R. A. Kvalimetriya ugol'nykh mestorozhdeniy [Qualimetry of coal fields], Saint-Petersburg, 2011, 438 p.

18. Bondarev A. V., Shvankin M. V., Nikolashin S. Yu. Monitoring critical factors of the mas-sif condition at mining enterprises. Problems of technosphere risk management. 2021, no. 4 (60), pp. 13—18. [In Russ]. EDN: ITRRRD.

19. Zuev B. Y., Istomin R. S., Kovshov S. V., Kitsis V. M. Physical modeling the formation of roof collapse zones in Vorkuta coal mines. Bulletin of the Mineral Research and Exploration. 2020, vol. 162, pp. 225—234. DOI: 10.19111/bulletinofmre.620478.

20. Shabarov A. N., Noskov V. A., Pavlovich A. A., Cherepov A. A. Concept of geomechanical risk in open pit mining. Gornyi Zhurnal. 2022, no. 9, pp. 22—28. [In Russ]. DOI: 10.17580/gzh.2022. 09.04.

21. Batugin A. S. Geodynamic effects of the ultimate stress state of the earth's crust. Russian Mining Industry Journal. 2023, no. S1, pp. 14—21. [In Russ]. DOI: 10.30686/1609-9192-2023-S1-14-21.

22. Rasskazov M., Tereshkin A., Tsoi D., Konstantinov A., Miroshnikov V., Bagautdinov I., Kozhogulov K. Research of the formation of zones of stress concentration and dynamic manifestations based on seismoacoustic monitoring data in the fields of the Kola Peninsula. E3S Web Conference. 2020, vol. 192, article 01009. DOI: 10.1051/e3sconf/202019201009.

23. Protosenya A. G., Belyakov N. A., Buslova M. A. Modeling the stress-strain state of a block rock massif of ore deposits during mining by caving systems. Journal of Mining Institute. 2023, vol. 262, pp. 619—627. [In Russ]. EDN: EGDXKM.

24. Kuz'min Yu. O. Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol'zovanii [Modern geodynamics and assessment of geodynamic risk in subsoil use], Moscow, 1999, 220 p.

25. Ji, H., Li Z., Peng Y. Yang Y., Tang Y. Pore structures and methane sorption characteristics of coal after extraction with tetrahydrofuran. Journal of Natural Gas Science and Engineering. 2014, vol. 195, pp. 287—294. DOI: 10.1016/j.jngse.2014.05.020.

26. Cai Y., Liu Dameng, Pan Zhejun, Yao Yanbin, JLi Unqian, Qiu Yongkai Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel. 2013, vol. 1035, pp. 258—268. DOI: 10.1016/j.fuel.2012.06.055.

27. Kuklin A. I., Ivankov O. I., Rogachev A. V., Soloviev D. V., Islamov A. Kh., Skoy V. V., Kovalev Yu. S., Vlasov A. V., Ryzhikov Yu. L., Soloviev A. G., Kutserka N., Gordeliy V. I. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Journal of Physics Conference Series. 2017, vol. 848, no. 1, article 012010. DOI: 10.1088/17426596/848/1/012010.

28. Avnir D., Jaroniec M. An isotherm equation for adsorption on fractal surfaces of hetero-geneous porous materials. Langmuir. 1989, vol. 5, pp. 1431—1433. DOI: 10.1021/la00090a032.

29. Xiaoshi Li, Yiwen Ju, Quanlin Hou, Zhuo Li, Junjia Fan FTIR and raman spectral research on metamorphism and deformation of coal. Journal of Geological Research. 2012, article 590857. DOI: 10.1155/2012/590857.

30. Vasilenko T. A., Kirillov A. K., Sobolev V. V., Doroshkevich A. S., Doroshkevich N. V. Methods for studying the electrophysical and structural characteristics of fossil coals. Fiziko-tekhnicheskie problemy gornogo proizvodstva: Sbornik nauchnykh trudov. No. 21 [Physical and technical problems of mining production: Collection of scientific papers. No. 21], Donetsk, 2019, pp. 5—31. [In Russ]. DOI: 10.37101/ftpgp21.01.001.

31. Rudko V. A., Gabdulkhakov R. R., Pyagai I. N. Scientific and technical substantiation of the possibility of organizing the production of needle coke in Russia. Journal of Mining Institute. 2023, vol. 263, pp. 795—809. [In Russ]. EDN: KYNHWL.

32. Shabarov A. N., Tsirel S. V., Morozov K. V., Rasskazov I. Yu. Concept of complex geo-dynamic monitoring in underground mining operations. Gornyi Zhurnal. 2017, no. 9, pp. 59—64. [In Russ]. DOI: 10.17580/gzh.2017.09.11.

33. Ayruni A. T. Prognozirovanie i predotvrashchenie gazodinamicheskikh yavleniy v ugol'nykh shakhtakh [Forecasting and prevention of gas-dynamic phenomena in coal mines], Moscow, Nauka, 1987, 310 p.

34. Menzhulin M. G., Korshunov G. I., Kiryukov V. V., Novikova V. N., Montikov A. V. Study of the consequences of phase transitions in coals of different stages of metamorphism using scanning electron microscopy. MIAB. Mining Inf. Anal. Bull. 2011, no. 5, pp. 102—107. [In Russ]. EDN: ONBNKN.

35. Leisle A. V., Kovalski E. R. Complex extraction of methane and coal from thick coal seams.Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016, vol. 7, no. 35, pp. 1660— 1666. http://www.rjpbcs.com/pdf/2016_7%283%29/[205].pdf.

36. Khokhlov S., Abiev Z., Makkoev V. The choice of optical flame detectors for automatic explosion containment systems based on the results of explosion radiation analysis of methaneand dust-air mixtures. Applied Sciences. 2022, vol. 12, no. 3, article 1515. DOI: 10.3390/app12031515.

37. Spravochnik po tektonicheskoy terminologii [Handbook of tectonic terminology], Moscow, Nedra, 1970, 584 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.