Forecast and comparison of application areas of high-angle conveyors

The article discusses application of cyclical-and-continuous technology using highangle pressure-belt conveyors in open pit mines. The increase in the pit depth leads to the worsening of mining conditions and to the higher expenses connected with haulage, which constitute a significant part of the cost of mining. The promising method of broken rock haulage is the use of cyclical-and-continuous technology. The operation of the conventional belt conveyors needs straight portions of pit wall, involves high capital costs of preparatory work and, in case that cutback is necessary, leads to an increased amount of stripping and, thus, to heavy expenditures. Consequently, it is of the current concern to substantiate an economically effective application range for the cyclical-and-continuous technology with high-angle pressure-belt conveyors as compared with the truck-and-shovel systems, highangle conveyor galleries and belts. The layout of the high-angle pressure-belt conveyor and its application examples in open pit mining are given. The studies have found parameters for the cyclical-and-continuous technology with the high-angle pressure-belt conveyor, conventional belts and truck-and-shovel systems at different process variables (lifting height of rocks from 180 to 680 m, annual capacity of operating system from 5 to 30 Mt/yr). The change in NPV versus geotechnical parameters in case of the cyclical-and-continuous technologies with the highangle pressure-belt conveyor, conventional belt and truck-and-shovel system is demonstrated. The range of the most efficient application of the cyclical-and-continuous technology with the high-angle pressure-belt conveyor as against the truck-and-shovel system, conveyor belt and high-angle conveyor gallery is identified.

Keywords: cyclical-and-continuous technology, high-angle conveyor, high-angle pressure-belt conveyor, technical and economic comparison, truck-and-shovel system, crushing-and-loading plant, belt conveyor, conveyor gallery.
For citation:

Semenkin A. V., Zhuravlev A. G. Forecast and comparison of application areas of high-angle conveyors. MIAB. Mining Inf. Anal. Bull. 2021;(5—2):322—337. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_322.

Acknowledgements:

The study was carried out under State Contract No. 075-00581-19-00, Topic No. 0405-20190007.

Issue number: 5
Year: 2021
Page number: 322-337
ISBN: 0236-1493
UDK: 622.68:621.867.212.7
DOI: 10.25018/0236_1493_2021_52_0_322
Article receipt date: 16.12.2020
Date of review receipt: 25.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Semenkin A. V.1, junior researcher, е-mail: semenkin@Igduran.ru;
Zhuravlev A. G.1, Cand. Sci. (Eng.), chief of laboratory, Institute of mining, е-mail: juravlev@igduran.ru;
1 Institute of Mining of Ural branch of RAS, Ekaterinburg, Russia.

 

For contacts:
Bibliography:

1. Nel S., Kizil M. S., Knights P. Improving truck-shovel matching. Proceedings of the 35th APCOM Symposium. Eds. E. Y. Baafi, R. J. Kinimonth, I. Porter. Wollongong, NSW, Australia, 24—30 September 2011. P. 381—391.

2. Bozorgebrahimi E. The evaluation of haulage truck size effects on open pit mining: Thesis for Doctor Philosophy. British Columbia, 2004. 177 p.

3. Sheshko E. E. Justification of parameters of powerful steeply inclined conveyors with a pressure belt  for  lifting  from  deep  quarries.  Gornaya  promyshlennost’.  2017, no. 6(163), pp. 80—93 [In Russ].

4. Yakovlev V. L., Smirnov V. P., Bersenev V. A. Ustroistvo drobil’no-konveiernykh kompleksov na glubokikh kar’erakh [Arrangement of crushing and conveyor complexes in deep quarries], Ekaterinburg, IGD UrO RAN, 2003, 42 p. [In Russ].

5. Burt С. N., Caccetta L. Equipment selection for surface mining. A review. Interfaces, 2014, Vol. 44 (2), Pp. 143—162.

6. Tim J., Duncan S., Curley M. The impact of broken rock angle of repose on truck and shovel capacity and tire life. Canadian Institute of Mining, Metallurgy, and Petroleum, 2020, no. 11(3), Pp. 165—181. DOI: 10.1080/19236026.2020.1793647.

7. Isaac D., Peter K., Kizil M. S. Truck and shovel versus in-pit conveyors systems: a comparison of the valuable operating time. Coal Operators’ Conference. Wolloongong: The University of Wolloongong, 2016. pp. 463—476.

8. Minkin A., Vol’pers F. M., Hell’mut T. A new concept of cyclic-flow steeply inclined transport with the use of in pit crushing and transportation system (IPCC) for open-pit mining. Ugol’, 2018, no. 5, pp. 34—38 [In Russ]. DOI: http:. dx.doi.org/10.18796/0041— 5790—2018—5-34—38.

9. Minkin A., Börsting P., Becker N. Pipe Conveying the next Stage: A new Technology for Steep Incline High Capacity Open Pit Conveying. Bulk solids handling, 2016, Vol. 36, no. 2, pp. 16−23.

10. Nauka MISiS [science MISiS], available at: http:. science.misis.ru/ru/ nauchnapravleniy/1162/12943/ (accessed 4.02.2021).

11. Semenyuk A. A., Reshetnyak S. P., Bajchurina N. I., Sultanova N. R. Innovative technology for ore transport from the Olenegorsk Deposit using a steeply inclined conveyor. MIAB. Mining Inf. Anal. Bull. 2015, no. 56, pp. 413—420 [In Russ].

12. «Metalloinvest» planiruet vlozhit’ 64 mlrd rublej do 2024 goda v modernizaciyu GOKov [Metalloinvest plans to invest 64 billion rubles by 2024 in the modernization of GOK]. Available at: https:. tass.ru/ekonomika/6980305 (accessed 25 November 2020).

13. Semenkin A. V. Taking into account the time factor in determining the effectiveness of the use of CFT complexes. Izvestiya UGGU. 2017, No1, pp. 72—75 [In Russ].

14. Karmaev G. D., Glebov V. A. Vybor gorno-transportnogo oborudovaniya tsiklichnopotochnoi tekhnologii kar’erov [Choice in the systems mining equipment cyclic-flow technology pits], Ekaterinburg, IGD UrO RAN, 2012, 296 p. [In Russ].

15. Argimbaev K. R., Maya B. O. The experience of the introduction of mobile crushing and screening complexes on a deposit of building materials. Research journal of applied science, 2016, Vol. 11, no. 6, pp. 300—303.

16. Fisher T. Stationary and semi-mobile crushing plants. A comparison: Part I: Theoretical considerations. Cement International, 2017, no. 15(4), Pp. 66—69.

17. Abbaspour H., Drebenshtedt C., Parisheh M. Optimum location and relocation plan of semi-mobile in-pit crushing and conveying systems in open-pit mines by transportation problem. International Journal of Mining Reclamation and Environment, 2019, no. 33(5), pp. 297—317. DOI: 10.1080/17480930.2018.1435968.

18. Osadchij A. M., Furin A. M., Holodkov A. A. Semi-stationary crushing and reloading plants of Uralmashzavod. MIAB. Mining Inf. Anal. Bull. 2013, no. 11, pp. 158—161.

19. Zhuravlev A. G., Semenkin A. V. Evaluation of the effectiveness of the cyclic-flow technology in the modern quarries. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2020, Vol. 331, no. 10, pp. 80—90 [In Russ]. DOI: 10.18799/2413 1830/2020/10/2852.

20. Davydov S. Ya, Valiev N. G., Filatov M. S., Polezhaev N. I, Kozhushko G. G Use of tubular belt conveyors for industrial waste of enterprises. Izvestiya UGGU. 2017, no. 4(48), pp. 72—76 [In Russ]. DOI 10.21440/2307—2091—2017—4-72—76.

21. Semenkin A. V. Overview of the use of steeply inclined conveyors as quarry and mainline transport. Problemy nedropol’zovaniya. 2020, no. 2, pp. 25—37 [In Russ]. DOI: 10.25635/2313—1586.2020.02. 025.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.