Prediction of initiation and propagation of tensile fractures based on physical and mechanical properties of rocks

In full-scale conditions, especially at great depths, layers of parallel fractures are often observed. These fractures are called the tensile fractures induced by compression. This kind of fracture is not shearing but tension. The value of the tensile strain which initiates and pushes fractures makes it possible to determine the instability potential of rock mass around an underground excavation. The critical tensile strain value of rocks is important for determining tensile strain zone sizes and for choosing rock bolts with bearing plates to be fixed in stable rocks. In this study, the mathematical equations were constructed for the prediction of initiation threshold ( ) and propagation threshold () for tensile fractures based on the physical and  mechanical properties of rocks (compression strength, Poisson’s ratio and elasticity modulus). Reliability of the constructed mathematical equation was checked by comparing the values of and  with the numerical model calibration results and with actual mine observations. The mathematical equations are constructed based on the physical and mechanical properties of rock samples in compression and are checked with regard to the cyclic numerical calibration as follows: modeling  observation  calibration.

Keywords: tensile strains, calibration method, arched roadway, mining depth, prediction, thickness, tensile strain zone, rock, Map3D and RocData, initiation, propagation, tensile fractures.
For citation:

Nguyen Van Minh, Umarov A. R., Yanbekov A. M., Khazhyylai C. V. Prediction of initiation and propagation of tensile fractures based on physical and mechanical properties of rocks. MIAB. Mining Inf. Anal. Bull. 2021;(6):84-94. [In Russ]. DOI: 10.25018/0236_ 1493_2021_6_0_84.

Acknowledgements:
Issue number: 6
Year: 2021
Page number: 84-94
ISBN: 0236-1493
UDK: 622.831; 622,2; 622.235
DOI: 10.25018/0236_1493_2021_6_0_84
Article receipt date: 12.02.2021
Date of review receipt: 16.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.05.2021
About authors:

Nguyen Van Minh, Graduate Student, e-mail: minhnv@utt.edu.vn, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia
A.R. Umarov 1, Laboratory Assistant, e-mail: flek1231998@mail.ru,
A.M. Yanbekov 1, Laboratory Assistant, e-mail: yanbekov17@mail.ru,
C.V. Khazhyylai 1, Laboratory Assistant, e-mail:hod.872198@mail.ru,
1 Research Center for Applied Geomechanics and Convergent Technologies in Mining, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

Nguyen Van Minh, e-mail: minhnv@utt.edu.vn, A.R. Umarov, e-mail: flek1231998@mail.ru

 

Bibliography:

1. Guzev M. A., Odintsev V. N., Makarov V. V. Principals of geomechanics of highly stressed rock and rock massifs. Tunnelling and Underground Space Technology. 2018, vol. 81, pp. 506—511.

2. Joughin W. C. Dealing with uncertainty and risk in the design of deep and high stress mining excavations. Proceedings of the Eighth International Conference on Deep and High Stress Mining, Australian Centre for Geomechanics, Perth. 2017, pp. 489—507. DOI: 10.36487/ACG_ rep/1704_33.3_Joughin.

3. Wagner H. Deep mining: a rock engineering challenge. Rock Mechanics and Rock Engineering. 2019, vol. 52, pp. 1417–1446. DOI: 10.1007/s00603-019-01799-4.

4. Eberhardt E., Stead D., Stimpson B., Read R. S. Identifying crack initiation and propagation thresholds in brittle rock. Canadian Geotechnical Journal. 1988, vol. 35, no. 2, pp. 222— 233. DOI: 10.1139/cgj-35-2-222.

5. Barton N., Shen B. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock. Journal of Rock Mechanics and Geotechnical Engineering. 2017, vol. 9, no. 2, pp. 210—225. DOI: 10.1016/j.jrmge.2016.11.004.

6. Kuijpers J. Fracturing around highly stressed excavations in brittle rock. Journal of the South African Institute of Mining and Metallurgy. 2000, vol. 100, pp. 325–332.

7. Lushnikov V. N., Sandy M. P., Eremenko V. A., Kovalenko A. A., Ivanov I. A. Method of definition of the zone of rock massif failure range around mine workings and chambers by numerical modeling. Gornyi Zhurnal. 2013, no. 12, pp. 11–16. [In Russ].

8. Eremenko V.A., Aksenov Z. V., Pul E. K., Zakharov N. E. MAP 3D analysis of secondary stress field structure in face area of development headings in rockburst-hazardous seams. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 91—104. [In Russ]. DOI: 10.25018/0236-1493-2020-50-91-104.

9. Eremenko V. A., Ainbinder I. I., Marysyuk V. P., Nagovitsin Yu.N. Guidelines for selecting ground support system for the Talnakh operations based on the rock mass quality assessment. Gornyi Zhurnal. 2018, no. 12, pp. 101—106. [In Russ]. DOI: 10.17580/gzh.2018.10.18.

10. Stacey T. R. A simple extension strain criterion for fracture of brittle rock. International Journal of Rock Mechanics and Mining Sciences. 1981, vol. 18, pp. 469–474. [In Russ]. DOI: 10.1016/0148-9062(81)90511-8.

11. Galchenko Yu. P., Leizer V. I., Vysotin N. G., Yakusheva E. D. Procedure justification for laboratory research of secondary stress field in creation and application of convergent technology for underground mining of rock salt. MIAB. Mining Inf. Anal. Bull. 2019, no. 11, pp. 35–47. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-35-47.

12. Nguyen Van Min, Eremenko V. A., Leizer V. I., Sukhorukova M. A., Shermatova S. S. Determining the size of zones of tensile deformations in the host array of preparatory workings. Inzhenernaya fizika. 2020, no. 7, pp. 39–48. [In Russ]. DOI: 10.25791/infizik.07.2020.1148.

13. Hallbauer D. K., Wagner H., Cook N. G. W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1973, vol. 10, pp. 713–726. DOI: 10.1016/0148-9062(73)90015-6.

14. Aizhong Lu, Ning Zhang, Guisen Zeng An extension failure criterion for brittle rock. Deep Rock Behaviour in Engineering Environments. 2020, vol. 2020, pp. 1–12. DOI: 10.1155/ 2020/8891248.

15. Zhi-Ming Ye, Huan-Ran Yu, Wen-Juan Yao A new elasticity and finite element formulation for different Young’s modulus when tension and compression loadings. Journal of Shanghai University. 2001, vol. 5, pp. 89—92.

16. Cai M. Practical estimates of tensile strength and the Hoek-Brown strength parameter mi of brittle rocks. Rock Mechanics and Rock Engineering. 2010, vol. 43, pp. 167–184. DOI: 10.1007/s00603-009-0053-1.

17. Graue R., Siegesmund S., Middendorf B. Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Environmental Earth Sciences. 2011, vol. 63, pp. 1799–1822. DOI: 10.1007/s12665-011-1077-x.

18. Coviello A., Lagioia R., Nova R. On the measurement of the tensile strength of soft rocks. Rock Mechanics and Rock Engineering. 2005, vol. 38, pp. 251–273. DOI: 10.1007/s00603-0050054-7.

19. Hoek E., Brown E. T. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences. 1997, vol. 34, pp. 1165–1186. DOI: 10.1016/S13651609(97)80069-X.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.