Prediction of coal quality using block model of a seam: A case-study of Kuti lignite deposit

The article describes the quality prediction procedure for coal based on the complete and seam-wise block models of lignite deposits. The goal of the study is to construct a block model of seam I of Kuti lignite deposit with quality characteristics of the blocks. The marker variables of the modeling are the high and low heat values, as well as the ash content of coals. The article describes meeting of two objectives: creation of a digital block model of coal with quality characteristics and the use of the model in mining process; correlation and analysis of the coal quality characteristics in the digital block model based on the geological exploration data of 1959 and generalized exploration data of 2020. The digital coal seam block models in this study use the interpolated coal quality characteristics from the geological exploration data of 1959. The analysis shows a good agreement between the results of the block modeling of a coal seam and the data of operational exploration accomplished at the test deposit in 2020. Based on this agreement, the authors put forward a hypothesis on applicability of the interpolation methods in assessment of both mineral quality and mining safety within the limits of a lithological unit.

Keywords: coal, block model, coal seam, coal heat value, ash content, Kuti lignite deposit, interpolation, coal quality characteristics.
For citation:

Sidorova G. P., Manikovskiy P. M. Prediction of coal quality using block model of a seam: A case-study of Kuti lignite deposit. MIAB. Mining Inf. Anal. Bull. 2022;(12):55-66. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_55.


The study was supported by the Russian Science Foundation, Grant No. 2-27-20057,

Issue number: 12
Year: 2022
Page number: 55-66
ISBN: 0236-1493
UDK: 004.94/622
DOI: 10.25018/0236_1493_2022_12_0_55
Article receipt date: 17.10.2022
Date of review receipt: 24.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

G.P. Sidorova1, Dr. Sci. (Eng.), Professor, e-mail:,
P.M. Manikovskiy1, Senior Lecturer, e-mail:, ORCID ID: 0000-0002-0120-1627,
1 Transbaikal State University, 672039, Chita, Russia.


For contacts:

G.P. Sidorova, e-mail:


1. Feng G., Bai J., Zhang Y. Basic theories and key technologies of rock strata control for residual coal resources mining under complex conditions. Meitan Kexun Jishu. 2020, vol. 48, no. 1, pp. 144—149. DOI: 10.13199/j.cnki.cst.2020.01.018.

2. Valuev A. M. About models and methods of optimization in the problems of designing open pit mining. MIAB. Mining Inf. Anal. Bull. 2015, no. 2, pp. 197—206. [In Russ].

3. Yakovlev A. M. Approbation of algorithms for automated processing of geological databases in technological schemes for managing the quality of a mineral. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-1, pp. 248—257. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_248.

4. Kantemirov V. D., Titov R. S., Yakovlev A. M. Possibilities of computer modeling for solving the issues of quality management of mineral raw materials. Problems of Subsoil Use. 2016, no. 4, pp. 170—176. [In Russ].

5. Kantemirov V. D., Yakovlev A. M., Titov R. S. Estimation of qualitative indicators of minerals using geoinformation technologies of block modeling. Geoinformatika. 2020, no. 3, pp. 29—37. [In Russ]. DOI: 10.47148/1609-364X-2020-3-29-37.

6. Kantemirov V. D., Yakovlev A. M., Titov R. S. Geoinformation technologies of block modeling for assessing the qualitative indicators of minerals in the conditions of transitional processes in mining. Vestnik Dal'nevostochnogo otdeleniya Rossiyskoy akademii nauk. 2021, no. 1, pp. 38—47. [In Russ]. DOI: 10.37102/0869-7698-2021_215_01_03.

7. Manikovsky P. M., Vasyutich L. A., Sidorova G. P. Methods of modeling ore deposits in GGIS. Vestnik Zabaykal’skogo gosudarstvennogo universiteta. 2021, vol. 27, no. 2, pp. 6—14. [In Russ]. DOI: 10.21209/2227-9245-2021-27-2-6-14.

8. Pinto F. A. C., Deutsch C. V. Expected uncertainty as a function of the variogram, data spacing, and other factors. Application of Computers and Operations Research in the Mineral Industry. Proceedings of the 37th International Symposium APCOM 2015. 2015, рр. 1149— 1161.

9. Abramovich А., Stepanov Yu., Janocko Ju. The influence of the coal mining process on the state of the earth's surface in the district of the block. E3S Web of Conferences. 2020, vol. 174, article 01051. DOI: 10.1051/e3sconf/202017401051.

10. Babish G. Geostatistics without tears. A practical guide to surface interpolation, geostatistics, variograms and kriging. Regina, Saskatchewan. 2006, 9 p.

11. Mohammadpour M., Bahroudi A., Abedi M., Rahimipour G., Khalifani F. M. Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging. Journal of Geochemical Exploration. 2019, vol. 200. рр. 13—26.

12. Afeni T. B., Akeju V. O., Aladejare A. E. A comparative study of geometric and geostatistical methods for qualitative reserve estimation of limestone deposit. Geoscience Frontiers. 2020, vol. 12, no. 1, pp. 243—253. DOI: 10.1016/j.gsf.2020.02.019.

13. Nagovitsyn O. V., Lukichev S. V. Conceptual approach to modeling mining technology objects using MINEFRAME. Voprosy osusheniya, geologii i geoinformatiki, geomekhaniki, spetsial'nykh gornykh rabot i gornykh tekhnologiy. Materialy 12 mezhdunarodnogo simpoziuma «Osvoenie mestorozhdeniy mineral'nykh resursov i pozemnoe stroitel'stvo v slozhnykh gidrogeologicheskikh usloviyakh» [Issues of drainage, geology and geoinformatics, geomechanics, special mining operations and mining technologies. Materials of the 12th International Symposium «Development of mineral resources deposits and underground construction in difficult hydrogeological conditions»], Belgorod, VIOGEM, 2013, pp. 238—245. [In Russ].

14. Dell'Accio F., Di Tommaso F. On the hexagonal Shepard method. Applied Numerical Mathematics. 2019. vol. 150. рр. 51—64. DOI: 10.1016/j.apnum.2019.09.005.

15. Kaputin Yu. E. Sistemy kontrolya soderzhaniy (Grade control) na gornykh predpriyatiyakh [Grade control systems at mining enterprises], Saint-Petersburg, Nedra Системы контроля содержаний (Grade control) на горных предприятиях. СПб.: Недра, 2012, 330 p.

16. Protsenko A. V., Bayrov Zh. B., Fedotov G. S., Zartenova L. G. Use of economic indicators in medium-term mine planning in geological and mining information system Micromine. MIAB. Mining Inf. Anal. Bull. 2018, no. 8, pp. 208—216. [In Russ]. DOI: 10.25018/0236-14932018-8-0-208-216.

17. Sapronova N. P., Fedotov G. S. Peculiarities of reservoir deposits modeling in the Micromine GGIS environment. MIAB. Mining Inf. Anal. Bull. 2018, special edition 1, pp. 38—45. [In Russ].

18. Lukichev S. V., Nagovitsin O. V., Semenova I. E., Belogorodtsev O. V. Mineframe — approaches to solving the problems of design and planning of mining operations. Innovatsionnye napravleniya v proektirovanii gornodobyvayushchikh predpriyatiy. Sbornik nauchnykh trudov [Innovative directions in the design of mining enterprises. Collection of scientific papers], no. 198, Saint-Petersburg, 2017, pp. 50—59.

19. Gholamnejad J., Azimi A., Teymouri M. Application of stochastic programming for iron ore quality control. Journal of Mining and Environment. 2018, vol. 9, no. 2, pp. 331—338. DOI: 10.22044/jme.2018.5952.1409.

20. Basargin A. A. Modeling of deposits of ore minerals using the micromine geoinformation system. Interexpo Geo-Siberia. 2016, vol. 1, no. 2, pp. 151—155. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.