Predicting displacements of ore body boundaries in generation of blasted rock pile

The review of the present-day studies into blasting-induced displacement of ore boundaries reveals two current approaches to the boundary displacement determination: the direct measurement of the displaced boundary using special tools placed in rocks and the predictive modeling of displacement. The advantages and disadvantages of the approaches are described. The conclusion is draw that any prediction of the ore body boundary displacement is either difficult and time-consuming, or is unverified practically. This article presents a simplified calculation algorithm for ore boundary displacements in variation of basic blasting pattern designs. Pilot blasting was carried out to trial the proposed analytical model. The calculations show that the ore body boundary displaces from its initial position by 5–7 m, while the direct measurement by sampling of blasted rock pile points at the displacement of the test boundary by 6 m. The calculation and measurement agreement is 80%, which is permissible in the test problem. The general provisions are given to select a predictive model of ore body boundary displacement for specific mining and blasting conditions.

Keywords: blast, displacement, mining boundary, blasted rock pile, sensor, ore, production, technology.
For citation:

Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. MIAB. Mining Inf. Anal. Bull. 2023;(3):40-56. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_40.

Issue number: 3
Year: 2023
Page number: 40-56
ISBN: 0236-1493
UDK: 625.235
DOI: 10.25018/0236_1493_2023_3_0_40
Article receipt date: 07.10.2022
Date of review receipt: 07.11.2022
Date of the editorial board′s decision on the article′s publishing: 10.02.2023
About authors:

S.V. Khokhlov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-1040-8328,
Yu.I. Vinogradov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0001-9468-2214,
A.P. Noskov, Managing Director, Polyus Aldan JSC, Nizhny Kuranakh, 678940, Russia, e-mail:,
A.V. Bazhenova1, Graduate Student, e-mail:, ORCID ID: 0000-0002-8155-2258,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

S.V. Khokhlov, e-mail:


1. Langefors U., Kihlstrom B. The Modern Technique of Rock Blasting. 3rd edition. New York: Wiley, 1978, 438 p.

2. Cunningham C. V. B. The Kuz—Ram model for prediction of fragmentation from blasting. Proceedings of 1st International Symposium on Rock Fragmentation by Blasting. Lulea, Sweden. 1983, pp. 439—454.

3. Hjelmberg H. Some Ideas on how to improve calculations of the fragment size distributionin bench blasting. Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting. Lulea, Sweden. 1983, pp. 469—494.

4. Koteleva N., Frenkel I. Digital processing of seismic data from open-pit mining blasts. Applied Sciences. 2021, vol. 11, no. 1, article 383. DOI: 10.3390/app11010383.

5. Dolzhikov V. V., Ryadinsky D. E., Yakovlev A. A. Influence of deceleration intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 18—32. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_18.

6. Koteleva N., Loseva E. Development of an algorithm for determining defects in cast-inplace piles based on the data analysis of low strain integrity testing. Applied Sciences. 2022, vol. 12, no. 20, article 10636. DOI: 10.3390/app122010636.

7. Favreau R. F., Lilly D. The use of computer blast simulations to evaluate the effect of angled holes in cast blasting. Proceedings of 3rd Conference on the Use of Computers on the Coal Industry. Morgantown, 1986, pp. 143—152.

8. Yang R., Kavetsky A. A three dimensional model of muckpile formation and grade boundary movement in open pit blasting. Geotechnical and Geological Engineering. 1990, vol. 8, pp. 13—34.

9. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosionon the free surface of a pit bench. Journal of Mining Institute. 2021, vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/PMI.2021.3.2.

10. Lucas R., Nies D. Improving fragmentation and ore displacement control. Proceedings of the 16th Conference on Explosives and Blasting Technique. The Society of Explosives Engineers. 1990, pp. 409—422.

11. Rakhmanov R. A., Loeb J., Kosukhin N. I. Estimation of ore contour movement s after the blast using the BMM system. Journal of Mining Institute. 2020, vol. 245, pp. 547—553. [In Russ]. DOI: 10.31897/PMI.2020.5.6.

12. Taylor S. L. Blast induced movement and its effect on grade dilution at the Coeur Rochester Mine. M.Sc Thesis, Department of Mining Engineering, Mackay School of Mines, Reno: University of Nevada. 1995, 237 p.

13. Gilbride L. J. Blast induced rock movement modeling for bench blasting in Nevada open pit mines. M.Sc. Thesis, Department of Mining Engineering, Mackay School of Mines, Reno, Nevada. 1995, pp. 178—189.

14. Favreau R. F. Blastpa — a practical blasting optimization system. Proceedings of 6th Conference on Explosives and Blasting Technology. The Society of Explosives Engineers. 1980, pp. 152—164.

15. Harries G. H. The Calculation of Heave and Muck-Pile Profile. Fragblast 2. Proceedings of 2nd International Symposium on Rock Fragmentation by Blasting. Keystone, Colorado, CRC Press, Taylor and Francis Group. 1987, pp. 248—256.

16. Furtney J. K., Cundall P. A., Chitombo G. P. Developments in numerical modeling of blast induced rock fragmentation: updates from the HSBM project. Fragblast 9. Proceedings of 9th International Symposium on Rock Fragmentation by Blasting. Granada, Spain. 2009, pp. 13—17.

17. Preece D. S., Taylor L. M. Complete computer simulation of crater blasting including fragmentation and rock motion. Proceedings of 5th Annual Symposium on Explosives and Blasting Research. International Society of Explosives Engineers. 1989, pp. 53—62.

18. Qiu X., Hao Y., Shi X., Hao H., Zhang S., Gou Y. Numerical simulation of stress wave interaction in short-delay blasting with a single free surface. PLoS ONE. 2018, vol. 13, no. 9, article 0204166. DOI: 10.1371/journal.pone.0204166.

19. Khokhlov S. V., Rakhmanov R. A., Alenichev I. A., Bazhenova A. V., Makkoev V. A. Investigation of the issue of management and control over the displacement of the exploded ore mass. Explosion technology. 2021, no. 132, pp. 59—76. [In Russ].

20. Laptev Yu. V., Kantemirov V. D., Yakovlev A. M. Computer modeling of rock mass collapse during selective mining. Al'manakh sovremennoy nauki i obrazovaniya. 2014, no. 5-6 (84), pp. 92—95. [In Russ].

21. Kabelko S. G., Dunaev V. A., Yanitsky E. B., Rakhmanov R. A. Computer modeling of rock mass displacement and evaluation of ore dilution as a result of a massive explosion during open-pit mining. Explosion technology. 2018, no. 120-77, pp. 94—108. [In Russ]. DOI: 10.18454/ PMI.2017.2.215.

22. Preece D. S., Burchell S. L., Scovira D. S. Coupled explosive gas flow and rock motion modeling with comparison to bench blast field data. Fragblast 4. Proceedings of the Fourth International Symposium on Rock Fragmentation by Blasting. Technical University, Vienna, Austria. 1993, pp. 239—245.

23. Sellers E., Furtney J., Onederra I., Chitombo G. Improved understanding of explosive— rock interactions using the hybrid stress blasting model. Journal of the Southern African Institute of Mining and Metallurgy. 2012, vol. 112, pp. 721—728.

24. Rogers W., Young A. Modelling large heaped fill stockpiles using FMS data. Advances in Computational Intelligence Applications in the Mining Industry. 2021, vol. 11, no. 6, article 636. DOI: 10.3390/min11060636.

25. Tordoir A., Wealtherley D., Onederra I., Bye A. A new 3D simulation framework to model blast induced rock mass displacement using physics engines. Proceedings of 9th International Symposium on Rock Fragmentation by Blasting. Granada, Spain, 2009, pp. 381—388.

26. Cocker A., Sellers E. J. Modelling blast movement for grade control at an open cut gold mine. Proceedings of 9th International Mining Geology Conference. 2014, pp. 377—386.

27. Libertsev O. N., Tsirel S. V. The effect of deceleration time on the formation of the ruins of the exploded rock. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1992, no. 4, pp. 73—79. [In Russ].

28. Tsirel S. V. The processes of the formation of the collapse of the exploded rock mass and the overburden of overburden rocks on coal and shale sections. MIAB. Mining Inf. Anal. Bull. 2007, special edition 5, pp. 45—66. [In Russ].

29. Libertsev O. N. Uvelichenie ob"emov peremeshcheniya porod vskryshi energiey vzryva pri bestransportnoy sisteme razrabotki [Increase in the volume of movement of rocks overburden by explosion energy with a transportless development system], Candidate’s thesis, Leningrad, 1984, 196 p.

30. Moldovan D. V., Chernobay V. I., Sokolov S. T., Bazhenova A. V. Design concepts for explosion products locking in chamber. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 5—17. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_5.

31. Yastrebova K. N., Chernobay V. I., Moldovan D. V. Solving the issue of ventilating atmosphere of opencast mining by resloping bench face. International Journal of Advanced Science and Technology. 2020, vol. 1, pp. 1—6.

32. Mysin A. V., Kovalevsky V. N., Dolzhikov V. V. Experimental studies on the performance parameters of elongated shaped charges of different configurations. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 125—140. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_125.

33. Rakishev B. R. On the initial velocity of the slope of the ledge with loosening charges. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 1971, no. 1, pp. 49—54. [In Russ].

34. Rakishev B. R., Champikova A. Kh., Kazangapov A. E. Mining and geological characteristics of exploded complex structural blocks. Explosion technology. 2018, no. 120/77, pp. 82—93. [In Russ].

35. Ilyin A. S., Kozlov A. D. Determination of the rate of separation of pieces from the surface of the slope of the ledge by the analytical method. Explosion technology. 1974, no. 73/30, pp. 96—98. [In Russ].

36. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022, vol. 256, pp. 539—548. [In Russ]. DOI: 10.31897/PMI.2022.87.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.