Bibliography: 1. Bornschlegl M., Bregulla M., Franke J. Methods-Energy Measurement — An approach for sustainable energy planning of manufacturing technologies. Journal of Cleaner Production, 2016, Vol. 1351, pp. 644—656.
2. Biel K., Glock C. Systematic literature review of decision support models for energyefficient production planning. Computers & Industrial Engineering, 2016, Vol. 101, pp. 243—259.
3. Klyuev R.V., Bosikov I.I., Mayer A.V., Gavrina O.A. Comprehensive analysis of the effective technologies application to increase sustainable development of the naturaltechnical system. Sustainable Development of Mountain Territories. 2020, №2, pp. 283—290. [In Russ].
4. Meira de Oliveira E., Oliveira F., Cyrino F. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy, 2018, Vol. 1441, pp. 776—788.
5. Kaboli S., Selvaraj J., Rahim N. Long-term electric energy consumption forecasting via artificial cooperative search algorithm. Energy, 2016, Vol. 115, pp. 857—871.
6. 6. Klyuev R.V., Bosikov I.I., Egorova E.V., Gavrina O.A. Assessment of mininggeological and mining technical conditions of the Severny pit with the use of mathematical models. Sustainable Development of Mountain Territories. 2020, №3, pp. 418–427. [In Russ]
7. Golik V.I., Razorenov Yu. I., Efremenkov A.B. Recycling of metal ore mill tailings. Applied Mechanics and Materials, 2014, Т. 682, pp. 363—368.
8. Golik V., Komashchenko V., Morkun V., Burdzieva O. Metal deposits combined development experience. Metallurgical and Mining Industry, 2015, Т. 7, № 6, pp. 591—594.
9. Zhukovskiy Y., Batueva D., Buldysko A., Shabalov M. Motivation towards energy saving by means of IoT personal energy manager platform. Journal of Physics: Conference Series, 2019, 1333 (6). DOI: 10.1088/1742—6596/1333/6/062033.
10. Buryanina N., Korolyuk Yu., Koryakina M., Suslov K., Lesnykh E. Four Samples Method for the Selection of Sinusoidal Components Parameters of Power System Emergency Mode. International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon. Vladivostok, Russia, 1—4 October 2019. DOI: 10.1109/ FarEastCon.2019.8934775.
11. Wei N., Li Ch., Peng X., Zeng F., Lu X. Conventional models and artificial intelligencebased models for energy consumption forecasting: A review. Journal of Petroleum Science and Engineering, 2019, Vol. 181, № 106187.
12. He Y., Zheng Y., Xu Q. Forecasting energy consumption in Anhui province of China through two Box-Cox transformation quantile regression probability density methods. Measurement, 2019, Vol. 136, pp. 579—593.
13. Klyuev R., Bosikov I., Gavrina O., Madaeva M., Sokolov A. Improving the energy efficiency of technological equipment at mining enterprises. Advances in Intelligent Systems and Computing, 2021, Vol. 1258. pp. 262—271.
14. Wang J., Du Yu, Wang J. LSTM based long-term energy consumption prediction with periodicity. Energy, 2020, Vol. 197, Article 117197.
15. Wang R., Lu Sh., Feng W. A novel improved model for building energy consumption prediction based on model integration. Applied Energy, 2020, Vol. 262, Article 114561.
16. Spiliotis E., Petropoulos F., Kourentzes N., Assimakopoulos V.Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption. Applied Energy, 2020, Vol. 2611, no. 114339.
17. Xiao J., Li Y., Xie L., Liu D., Huang J.A hybrid model based on selective ensemble for energy consumption forecasting in China. Energy, 2018, Vol. 15915, pp. 534—546.
18. Carvallo J., Larsen P., Sanstad A., Goldman Ch.Long term load forecasting accuracy in electric utility integrated resource planning. Energy Policy, 2018, Vol. 119, pp. 410—422.
19. Usmanova T. Kh., Isakov D.A. Important aspects of power costs of the mineral mining industry. Mining Industry. 2018, No 6 (142), pp. 30—33. [In Russ].