Spatial zoning of mineral deposits

Delineation of ore-bearing intervals, construction of ore bodies and lithological modeling of mineral deposits yet remain the uncomputerized processes which need direct participation of geologists. Industrial digitalization dictates minimization of operations which require high-level human control. One of the processes automation of which can help minimize manual work in delineation is detection of lithological varieties, geological bodies and geotechnical elements. The method proposed to delineate lithological varieties is based on neural network technologies for three-dimensional modeling of ore bodies (coal seams) and enclosing rocks in order to improve the quality of geological supervision, planning and design of mines. This method can refine and greatly accelerate processing of geological data from rock mass assaying at all stages of integrated subsoil use. The developed method of three-dimensional modeling of rock mass lithology using functional capabilities of neural networks enables modeling at shorter notice at the required accuracy and reliability of the results.

Keywords: mineral mining, geological supervision of subsoil use, statistics, data processing, operational exploration, drilling, data standartization, ore body, neural networks, 3D modeling, digital deposit.
For citation:

Melnichenko I. A., Kirichenko Yu. V. Spatial zoning of mineral deposits. MIAB. Mining Inf. Anal. Bull. 2021;(4):46-56. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_46.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 46-56
ISBN: 0236-1493
UDK: 550.8.053
DOI: 10.25018/0236_1493_2021_4_0_46
Article receipt date: 03.12.2020
Date of review receipt: 15.01.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

I.A. Melnichenko1, Graduate Student, e-mail: kors-ilay@mail.ru,
Yu.V. Kirichenko1, Dr. Sci. (Eng.), Professor,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

I.A. Melnichenko, e-mail: kors-ilay@mail.ru.

Bibliography:

1. Mahmoodi O., Smith R. S., Tinkham D. K. Supervised classification of down-hole physical properties measurements using neural network to predict the lithology. Journal of Applied Geophysics. 2016. Vol. 124. Pp. 17–26. DOI: 10.1016/j.jappgeo.2015.11.006.

2. Sorokina A. S., Zagibalov A. V. Practical application of Mineframe software in building a block model and calculating reserves of gold ore deposits. MIAB. Mining Inf. Anal. Bull. 2018. Special edition 27, pp. 65–72. [In Russ]. DOI: 10.25018/0236-1493-2018-6-27-65-72.

3. Gromov E. V., Toropov D. A. Improving the accuracy of reserves calculation using 3D modeling (on the example of the Partomchorr field). MIAB. Mining Inf. Anal. Bull. 2017. Special edition 23, pp. 158–166. [In Russ]. DOI: 10.25018/0236-1493-2017-10-23-158-166.

4. Likhman A. A.Geological block model as the main asset of a mining enterprise. Nedropolzovanie XXI vek. 2020, no 4 (87), pp. 170–175. [In Russ].

5. Alenichev V. M., Alenichev M. V. Increasing validity of geoinformation support in mining waste management. MIAB. Mining Inf. Anal. Bull. 2019, no 11, pp. 172–179. DOI: 10.25018/0236-1493-2019-11-0-172-179.

6. Shchenkova E. S.Use of statistical and geostatistical apparatus in block modeling (on the example of a vein-type gold ore deposit). Geologiya v razvivayushchemsya mire: sbornik nauchnykh statey [Geology in the developing world, Collection of scientific articles], Perm, 2019, pp. 517–520. [In Russ].

7. Cheklar M., Rybar P., Mihok J., Engel J. Economic assessment of mineral deposits on the examples of block models of open pit mining. Economics and Innovation Management. 2018, no 1, pp. 46–59. [In Russ]. DOI: 10.26730/2587-5574-2018-1-46-58.

8. Ripley B. D. Pattern recognition and neural networks. Cambridge University Press, 2014. 403 p.

9. Wang K., Zhang L. Predicting formation lithology from log data by using a neural network. Petroleum Science. 2008. Vol. 5. no 3. Pp. 242–246. DOI: 10.1007/s12182-008-0038-9.

10. Wood D. A. Lithofacies and stratigraphy prediction methodology exploiting an optimized nearest-neighbour algorithm to mine well-log data. Marine and Petroleum Geology. 2019. Vol. 110. Pp. 347–367. DOI: 10.1016/j.marpetgeo.2019.07.026.

11. Sahoo S., Jha M. K. Pattern recognition in lithology classification: modeling using neural networks, self-organizing maps and genetic algorithms. Hydrogeology Journal. 2017. Vol. 25. No 2. Pp. 311–330. DOI: 10.1007/s10040-016-1478-8.

12. Gu Y., Bao Z., Song X., Patil S., Ling K. Complex lithology prediction using probabilistic neural network improved by continuous restricted Boltzmann machine and particle swarm optimization. Journal of Petroleum Science and Engineering. 2019. Vol. 149. Pp. 966–978. DOI: 10.1016/j.petrol.2019.05.032.

13. Voronin A.Yu. Geological regionalization from the position of pattern recognition. Geoinformatika. 2008, no 1, pp. 13–18. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.