Ventilation of very long blind drifts: A case-study of Yubileiny Mine, ALROSA

The use of internal combustion engines in mining mineral reserves under pit bottoms in difficult geological and geotechnical conditions at ALROSA’s mines governs elongation of blind drifts driven to get access to ore bodies. In case of very long blind drifts (more than 2000 m), it is required to upgrade the head characteristics and capacities of local fans. The article informs on ventilation organization in very long blind drifts (more than 5000 m): conveyor and traffic ramps driven in the Yubileiny Mine by tunnel boring machine set. The proposed measures include large-diameter surface drilling (borehole diameter equals the diameter of pipelines intended to feed fresh air to faces) down to junction with the drifts. Drilling uses drill rig Robbins 73 RH С. The relationships to determine basic parameters when selecting a local fan for a face with self-propelled equipment—load–haul–dumper (LHD) model MPD-14 and dump truck model SHS-35—are also given. This information shows that for ventilating very long blind drifts, the total length should be divided into equal sections (about 1700 m) with regard to the length of the surface boreholes. The main fan is adopted to be a Korfmann’s local fan model AL / dAL (or analogs) of single (model AL17-2500) or double (model AL17-3150) arrangement. To feed fresh air in the face area, it is suggested to use KolaVentFlex mine ventilation flexible and crinkled hoses of different diameters (subject to the adopted ventilation circuit) with a flight of 100 m. This flow sheet is proposed for ventilating blind drifts until their connection on the Level of +48 m. Then, down to the Level of -680 m, the classical flow sheet of ventilation using pressure drop (with permanent or temporal main mine fan) should be used.

Keywords: local fan, large diameter boreholes, internal combustion engine machines, very long blind drift ventilation, ore body, open pit boundary connection, air leaks.
For citation:

Kopin S. V., Zyryanov I. V. Ventilation of very long blind drifts: A case-study of Yubileiny Mine, ALROSA. MIAB. Mining Inf. Anal. Bull. 2025;(1):34-46. [In Russ]. DOI: 10.25018/0236_1493_2025_1_0_34.

Acknowledgements:
Issue number: 1
Year: 2025
Page number: 34-46
ISBN: 0236-1493
UDK: 622.44
DOI: 10.25018/0236_1493_2025_1_0_34
Article receipt date: 11.10.2023
Date of review receipt: 19.04.2024
Date of the editorial board′s decision on the article′s publishing: 10.12.2024
About authors:

S.V. Kopin, Cand. Sci. (Eng.), Leading Researcher, Institute «Yakutniproalmaz» JSC «Alrosa», 678170, Mirny, Russia, e-mail: mobil1111@mail.ru,
I.V. Zyryanov, Dr. Sci. (Eng.), Head of Chair, Mirny Polytechnic Institute (branch) of North-Eastern Federal University, 678170, Mirny, Russia, e-mail: zyryanoviv@inbox.ru.

 

For contacts:

S.V. Kopin, e-mail: mobil1111@mail.ru.

Bibliography:

1. Bulatov K. V., Dik Yu. A., Kotenkov A. V., Tankov M. S., Kul'minskiy A. S., Tishkov M. S., Kul'minskiy A. A. Novye tekhnologicheskie resheniya razrabotki kimberlitovykh mestorozhdeniy Yakutii: monografiya [New technological solutions for the development of kimberlite deposits in Yakutia: monograph], Ekaterinburg, AO «Uralmekhanobr», 2022, 544 p.

2. Harris S. A., Brouchkov A., Cheng Guodong Geocryology. Characteristics and use of frozen ground and permafrost landforms. CRC Press, 2017, 810 p.

3. Hustrulid W. A., Bullock R. L. Underground mining methods. Engineering fundamentals and case studies. Published by SME, 2001, p. 718.

4. Ilyinov N. D., Mazhitov A. M., Allaberdin A. B., Vajdaev K. V. Optimization of the ventilation scheme with an increase in the production capacity of an underground mine. Russian Mining Industry Journal. 2021, no. 6, pp. 89—93. [In Russ]. DOI: 10.30686/1609-9192-2021-6-89-93.

5. Gendler S. G., Borisovsky I. A. Aerodynamic control in open pit gold mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 99—107. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-99-107.

6. Kazakov B. P., Kolesov E. V., Nakariakov E. V., Isaevich A. G. Models and methods of aerogasdynamic calculations for ventilation networks in underground mines: Review. MIAB. Mining Inf. Anal. Bull. 2021, no. 6, pp. 5—33. [In Russ]. DOI: 10.25018/0236-1493-2021-6-0-5.

7. Levin L. Yu., Zaitsev A. V., Grishin E. L., Semin M. A. Calculation of the amount of air by oxygen content for ventilation of working areas when using machines with internal combustion engines. Occupational Safety in Industry. 2015, no. 8, pp. 43—46. [In Russ].

8. Amosov P. V. Results of numerical modeling of the aerodynamics of dead-end workings with a tubeless ventilation method. Matematicheskie metody v tekhnike i tekhnologiyakh. 2020, vol. 2, pp. 114—117. [In Russ].

9. Nakariakov E. V., Grishin E. L. Analysis of the impact of the production cycle of a loading and delivery machine in a dead-end cleaning chamber on the efficiency of ventilation. Gornoe echo. 2020, no. 3 (80), pp. 120—123. [In Russ]. DOI: 10.7242/echo.2020.3.23.

10. Fainburg G. Z., Isaevich A. G. Analysis of microcirculation flows between microzones in face areas of blind shear stopes in potash mines with different ventilation methods. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 58—73. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0-58-73.

11. Nakaryakov E. V., Grishin E. L. Ventilation in long blind stopes during operation of load-hauldumpers with combustion engines. IOP Conference Series: Earth and Environmental Science. 2021, vol. 773, no. 1, article 012077. DOI: 10.1088/1755-1315/773/1/012077.

12. Kulik A. I., Timchenko A. N., Kosterenko V. N. Features of modeling aerogasodynamics of a coal mine treatment face. Ugol'. 2023, no. 3, pp. 75—78. [In Russ]. DOI: 10.18796/0041-5790-20233-75-78.

13. Juganda Aditya, Strebinger Claire Computational fluid dynamics modelling of a methane gas explosion in a full-scale, underground longwall coal mine. Mining, Metallurgy & Exploration. 2022, vol. 39, pp. 897—916.

14. Kobylkin S. S., Timchenko A. N., Kobylkin A. S. The use of computer modeling when choosing the parameters of a dust pump built into tunneling combines. Occupational Safety in Industry. 2021, no. 3, pp. 21—27. [In Russ].

15. Liu Ang, Liu Shimin, Wang Gang Predicting fugitive gas emissions from gob-to-face in longwall coal mines: Coupled analytical and numerical modelling. International Journal of Heat and Mass Transfer. 2020, vol. 150, article 119392. DOI: 10.1016/j.ijheatmasstransfer.2020.119392

16. Gurin A. A. Shapovalov V. A., Lyashenko V. I. Improving the safety of aspiration and ventilation systems by cleaning air ducts. Occupational Safety in Industry. 2021, no. 1, pp. 40—45. [In Russ]. DOI: 10.24000/0409-2961-2021-1-40-45.

17. Logachev I., Logachev K., Averkova O. Local exhaust ventilation: aerodynamic processes and calculations of dust emissions, Boca Raton, CRC Press, 2015, 576 р.

18. Baklushina I. V., Novikova K. Yu., Astrashenko V. V., Nalimov M. N., Shkurat M. S. Achievements of science and technology in the field of mine ventilation over the past 10 years. Tendentsii razvitiya nauki i obrazovaniya. 2021, no. 75-2, pp. 102—105. [In Russ]. DOI: 10.1841 l/lj-07-2021-58.

19. Zhu H., Shen Y., Yan Z., Guo Q. A numerical study on the feasibility and efficiency of point smoke extraction strategies in large cross-section shield tunnel fires using CFD modeling. Journal of Loss Prevention in the Process Industries. 2016, vol. 44, pp. 158—170.

20. Timofeevskiy A. L., Sulin A. B., Ryabova T. V., Neganov D. V. Characteristics of the air supply envelop of the cooled flooded air jet. AIP Conference Proceedings. 2017, vol. 1876, article 020059. DOI: 10.1063/1.4998879.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.