Operation of DC and AC drives of rotary table in unstable rotation mode of drill bit

This article continues the study into operation of rotary table drives in unstable rotation of drill bits. Uneven and unsteady rotation of drill bit, with locking, sliding and even reverse rotation, called the Stick–Slip Effect, can lead to auto oscillations accompanied by higher losses, decreased input power, resonances and vibrations of drilling pillar and, finally, by accelerated depreciation of drilling equipment. The problem of unstable rotation of drill bits is particularly acute in case of polycrystalline diamond compact (PDC) bits which have found wider application in recent decades. Many studies address various aspects of torsional behavior and unstable rotation of drill bits during operation. This article analyzes operation of DC/AC drives of rotary tables, compares their modes and reveals the stick–slip effect in the drives. In MATLAB Simulink environment, a generalized model is constructed for an automatic motor of rotary table with DC and AC drives, including the system of subordinate speed and current control. The mechanical part of the drives, including the drill tool, is represented by a three-mass model with regard to phenomena of elastic deformation and viscous friction in drill string. The numerical modeling is accomplished, and the regular patterns of speeds, moments and currents of DC and AC drives are found. The signs and the assessment criterion of the stick–slip effect are determined from the nature of the current oscillations in DC and AC drives in unstable rotation mode of drill bits.

Keywords: drilling unit, rotary table, motor, DC drive, asynchronous motors, automatic control system, Stick–Slip effect, sign, computer modeling.
For citation:

Ershov M. S., Komkov A. N., Feoktistov E. A. Operation of DC and AC drives of rotary table in unstable rotation mode of drill bit. MIAB. Mining Inf. Anal. Bull. 2021;(6):153167. [In Russ]. DOI: 10.25018/0236_1493_2021_6_0_153.

Acknowledgements:
Issue number: 6
Year: 2021
Page number: 153-167
ISBN: 0236-1493
UDK: 622.817:621.311
DOI: 10.25018/0236_1493_2021_6_0_153
Article receipt date: 07.11.2020
Date of review receipt: 16.11.2020
Date of the editorial board′s decision on the article′s publishing: 10.05.2021
About authors:

M.S. Ershov1, Dr. Sci. (Eng.), Professor, e-mail: msershov@yandex.ru,
A.N. Komkov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: komkov.a@gubkin.ru,
E.A. Feoktistov, Student, e-mail: Eugene.Feoktistov@yandex.ru, Moscow Institute of Physics and Technology (National Research University),
1 Gubkin Russian State University of Oil and Gas (National Research University), 119991, Moscow, Russia.

 

For contacts:

M.S. Ershov, e-mail: msershov@yandex.ru.

Bibliography:

1. Cunningham R. A. Analysis of downhole measurements of drill string forces and motions. Journal of Engineering for Industry. 1968, vol. 90, no. 2, pp. 208—216. DOI: 10.1115/1.3604616.

2. Simonov N. G., Yunin E. K. Vliyanie kolebatel'nykh protsessov na rabotu buril'nogo instrumenta [Effect of oscillatory processes on operation of drilling equipment], Moscow, Nedra, 1977, 217 p.

3. Rukovodstvo po ekspluatatsii PDC dolot dlya polevykh inzhenerov. Kompaniya BP, available at: http://drillpoint.ru/uploads/files/Rukovodstvo%20po%20ekspluatacii%20PDC%20 dolot%20dlya%20polevyh%20inzhenerov.pdf (accessed 25.11.2020). [In Russ].

4. Balitskiy V. P., Zaykov D. L. Analysis of torsion oscillation of drill string—The stick–slip effect and its impact on drilling. Bulletin of the Association of drilling contractors. 2015, no. 4, pp. 2—8. [In Russ].

5. Peng Wang Stick-slip vibration motion simulation of depth well drilling. Metallurgical and Mining Industry. 2015, no. 7, pp. 201–206.

6. Besselink B., Vromen T., Kremers N., van de Wouw N. Analysis and control of stick-slip oscillations in drilling systems. IEEE Transactions. Control Systems Technology. 2016, vol. 24, no. 5, pp. 1582—1593.

7. Aarsnes U. J., Van de Wouw N. Dynamics of a distributed drill string system: characteristic parameters and stability maps. Journal of Sound and Vibration. 2018, vol. 417, no. 37, pp. 376— 412. DOI: 16/j.jsv.2017.12.002.

8. Tang L., Zhu X., Qian X., Shi C. Effects of weight on bit on torsional stick-slip vibration of oil well drill string. Journal of Mechanical Science and Technology. 2017, vol. 31, no. 10, pp. 4589–4597.

9. Yang Liu, Wei Lin, Joseph Páez Chávez, Rulston De Sa Torsional stick-slip vibrations and multistability in drill-strings. Applied Mathematical Modelling. 2019, vol. 76, pp. 545—546.

10. Ritto T. G., Ghandchi-Tehrani M. Active control of stick-slip torsional vibrations in drillstrings. Journal of Vibration and Control. 2018, vol. 25, no. 1. DOI: 10.1177/1077546318774240.

11. Liping Tang, Xiaohua Zhu Effects of drill string length on stick–slip oscillation of the oilwell drill string. Iranian Journal of Science and Technology. Transactions of Mechanical Engineering. 2019. January, pp. 2—11. DOI: 10.1007/s40997-019-00279-y.

12. Bukreev S. V. Effects of valve-and-induction motor drives on transient processes in exploration drilling string. MIAB. Mining Inf. Anal. Bull. 2017, no. 10, pp. 219—225. [In Russ]. DOI: 10.25018/0236-1493-2017-10-0-219-225.

13. Saldivar B., Mondie S., Avila Vilchis J. C. The control of drilling vibrations. A coupled PDE-ODE modeling approach. International Journal of Applied Mathematics and Computer Science. 2016, vol. 26, no. 2, pp. 335—349.

14. Monteiro H. L. S., Trindade M. A. Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings. Journal Sound and Vibration. 2017, vol. 398, pp. 28–38.

15. Wei Lin, Joseph Paez Chavez, Yang Liu, Yingxin Yang, Yuchun Kuang Stick-slip suppression and speed tuning for a drill-string system via proportional-derivative control. Applied Mathematical Modelling. 2020, vol. 82, pp. 2—19.

16. Ershov M. S., Balitsky V. P., Melik-Shakhnazarova I. A. Rotary table DC drive operation under conditions of unstable rotation of drill bit. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 166—179. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-166-179.

17. Abramov B. I., Parfenov B. M., Kozhakov O. I., Shalagin M. A., Kolesnikov I. V. Modern DC electric drive for drilling rigs. Russian Electrical Engineering. 2009, vol. 80, no. 1, pp. 1–5.

18. Melkebeek J. A. Electrical machines and drives. Fundamentals and advanced modelling/ power systems. Springer International Publishing AG, 2018. 740 p.

19. German-Galkin S. G. Matlab & Simulink. Proektirovanie mekhanotronnykh sistem na PK [Computer-aided design of mechatronic systems], Saint-Petersburg, Izd-vo «Korona. Vek», 2017, 368 p.

20. Hoang L. Modelling and simulation of electrical drives using MATLAB / Simulink and Power System Blockset. IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society. 2001, vol. 3, pp. 1603—1611.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.