Rationalization of geometric parameters receptions bunkers primary gyratory cone crusher for automotive transport

Annotation: The article presents the results of studies of the influence of the geometric parameters of the receiving hopper of the crushing plant on its actual capacity. We consider bunkers in the form of a parallelepiped, designed for direct loading of a cone crusher located below it. The data were obtained on the basis of modeling the geometric parameters of the embankment in the bunker in accordance with the location of the unloading points and the carrying capacity of dump trucks. Many of the options considered are summarized in the form of two-dimensional and three-dimensional graphs.It is shown that for modern powerful crushing complexes with a capacity of 5000—8000 mt/h, it is rational to use two unloading points located on opposite sides; organization of three-sided unloading is excessive in terms of the crusher loading intensity and less efficient in terms of filling the hopper. The data on the influence of the length and width of the bunker on the occupancy, the degree of utilization of the geometric capacity are given. A rational range of the length and width of the bunker has been established for the considered range of carrying capacity of dump trucks, methods of increasing the capacity of the bunker by moving the unloading points towards the center of the bunker. The research data can be used in the design of crushing and reloading points of the CPT complexes, as well as receiving bunkers of concentration plants when loading by motor vehicles.

Keywords: receiving hopper, crushing and reloading plant, open-pit dump truck, coarse cone crusher, hopper capacity, bunker occupancy, rock pillow, cycle-flow technology.
For citation:

Zhuravlev A. G., Chendyrev M. A. Rationalization of geometric parameters receptions bunkers primary gyratory cone crusher for automotive transport. MIAB. Mining Inf. Anal. Bull. 2022;(5—1):158—170. [In Russ]. DOI: 10.25018/0236_1493_2022_51_0_158.

Acknowledgements:

the studies were performed in the framework of the State task №075— 00412—22 ПР.

Issue number: 5
Year: 2022
Page number: 158-170
ISBN: 0236-1493
UDK: 622.68:621.926
DOI: 10.25018/0236_1493_2022_51_0_158
Article receipt date: 01.11.2021
Date of review receipt: 04.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

Zhuravlev A. G.1, chief of laboratory, Cand. Sci. (Eng.), juravlev@igduran.ru;
Chendyrev M. A.1, Junior resercher, chendyrev@igduran.ru;
1 Institute of mining, Ural branch, Russian academy of sciences, 620075, Ekaterinburg, Mamina-Sibiryaka st., 58, Russia.

 

For contacts:

Zhuravlev A. G., juravlev@igduran.ru.

Bibliography:

1. Yakovlev V. L., Kornilkov S. V., Sokolov I. V. Innovacionnyj bazis strategii kompleksnogo osvoeniya resursov mineral’nogo syr’ya [The innovative basis of the strategy of integrated development of mineral resources]. Ekaterinburg, 2018, 360 p. [In Russ].

2. Pikalov V. A., Lapaev V. N., Savel’ev O. Yu. Features of designing high-performance quarries. Naukoemkie tekhnologii razrabotki i ispol’zovaniya mineral’nykh resursov, 2016, no.3, pp. 392—395. [In Russ].

3. Kozlov S. K., Kolpakov S. V., Inshakov S. V. Analysis of the effectiveness of the implementation of the automotive stripping complex at the Borodinsky section. MIAB. Mining Inf. Anal. Bull., 2018, no. S50, pp. 172—180. [In Russ]. DOI 10.25018/0236—14932018-12-50-172-180.

4. Glebov A. V. Basic principles of the formation of a mining company ‘s car fleet. Gornoe oborudovanie i elektromekhanika, 2010, no. 7, pp. 37—41. [In Russ].

5. Yakovlev V. L., Bersenev V. A., Glebov A. V. et all. Selection of cyclic flow technology schemes in deep quarries. Journal of mining science, 2018, no 5, pp. 98—104. [In Russ]. DOI 10.15372/FTPRPI20190511.

6. Galkin V. I. Experience of operation of tubular belt conveyors in the conditions of mining enterprises. MIAB. Mining Inf. Anal. Bull., 2008, no. S8, pp. 140—155. [In Russ]

7. Burmistrov K. V., Golovey S. I. Investigation of the possibility of using conveyor transport in complex mining and geological conditions of deep high-performance quarries. Aktual’nye problemy sovremennoi nauki, tekhniki i obrazovaniya: Tezisy dokladov 76-oi mezhdunarodnoi nauchno-tekhnicheskoi konferentsii: Magnitogorsk State Technical University named after G. I. Nosov, Magnitogorsk, 16–20 April 2018, pp. 3—4. [In Russ].

8. Galkin V. I., Sheshko E. E. Justification of the areas of effective use of special types of conveyors at the quarry. MIAB. Mining Inf. Anal. Bull. 2014, no. S1, pp. 400—410. [In Russ]

9. Lagunova Yu. A., Furin V. O., Fedulov K. A. Cone crushers of PJSC «Uralmashzavod» for specific operating conditions. Gornoe oborudovanie i elektromekhanika, 2018, no. 1 (135), pp. 27—33. [In Russ].

10. Jens Lichter, King Lim, Alex Potapov, Dean Kaja. New developments in cone crusher performance optimization. Minerals Engineering, Volume 22, Issues 7–8, 2009, pp. 613—617. doi.org/10.1016/j.mineng.2009.04.003.

11. Napol’skih S. A., Lipatov A. G., Furin V. O., Zhuravlyov A. G. Improvement of primary crushing technology for stoilensky ferruginous quartzite using updated gyratory crushers manufactured KKD-1500/180. Gornyi Zhurnal, 2021, no.6. pp. 41—46. [In Russ]. DOI: 10.17580/gzh.2021.06.02.

12. Andreeva L. I., Krasnikova T. I., Ushakov Yu. Yu. The methodology for the formation of an effective system to ensure the performance of mining equipment. Izvestiya vuzov. Gornyj zhurnal, 2019, no. 5, pp. 92—106. [In Russ]. DOI: 10.21440/0536-1028-2019-5-92106.

13. Zhuravlev A. G., Cherepanov V. A. Reserves to increase productivity of «quarry transport crushing-and-concentrating plant» subsystem taking into account crushing equipment utilization factors. Bulletin of theТomsk polytechnic university. Geo assets engineering, 2020, vol. 331, no. 11, pp. 195–207. [In Russ]. DOI 10.18799/24131830/2020/11/2902.

14. Zhuravlev A. G., Chendyrev M. A., Cherepanov V. A., Glebov I. A. Methodical approach to the development of regulations of maintenance and repair of crushing equipment of mining companies. MIAB. Mining Inf. Anal. Bull., 2020, no. 3—1, pp. 543—556. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-543-556.

15. Шустов А. А., Хаддад Д. С., Адамчук А. А. [и др.]. Improvement of transshipment points of cyclic-flow technology of open-pit mining of deep-lying mineral deposits. Fizikotekhnicheskie problemy razrabotki poleznyh iskopaemyh. 2019. no. 6. pp. 97—105. — DOI 10.15372/FTPRPI20190610.

16. Yudin A. V., Popov A. G., Shestakov V. S. Bunker systems of combined transport complexes in quarries. Izvestiya vuzov. Gornyj zhurnal, 2019, no.2, pp. 128—139. [In Russ]. DOI 10.21440/0536-1028-2019-2-128-139.

17. Changhao Guo, MingshengYa, Youlin Xu, Jiaqiang Zheng. Comparison on discharge characteristics of conical and hyperbolic hoppers based on finite element method, Powder Technology, Volume 394, 2021, pp. 300—311. doi.org/10.1016/j.powtec.2021.08.064.

18. Yudin A. V., Shestakov V. S., Saitov V. I., Abdulkarimov M. K. Determining the capacity of a bunker as a part of the handling system with combined transport, Izvestiya vuzov. Gornyj zhurnal, 2020, no. 4, pp. 99—112. [In Russ]. DOI: 10.21440/0536-10282020-4-99-112.

19. Evgeny Rabinovich, Haim Kalman, Per F. Peterson. Parametric study and design procedure for planar silos and hoppers. Powder Technology, Volume 388, 2021, Pages 333— 342. doi.org/10.1016/j.powtec.2021.04.086.

20. Zharikov I. F. About the capacity of the receiving hopper of the quarry crushing plant. American Scientific Journal, vol. 49, 2021, pp. 49—51. [In Russ] DOI: 10.31618/ asj.2707-9864.2021.1.49.103.

21. Megan Danczyk, Tom Meaclem, MaralMehdizad, Daniel Clarke, Petrik Galvosas, Luke Fullard, Daniel Holland. Influence of contact parameters on Discrete Element method (DEM) simulations of flow from a hopper: Comparison with magnetic resonance imaging (MRI) measurements. Powder Technology, Vol. 372, 2020, pp. 671—684. doi.org/10.1016/j. powtec.2020.06.002.

22. Nosenko A. S., Domnickij A. A., Altunina M. S., Zubov V. V. Theoretical and experimental research findings on batch-operation bin loader with hydraulically driven conveying element. MIAB. Mining Inf. Anal. Bull. 2019, no. 11, pp. 119—130. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0119-130.

23. Batalov A. P. Kremcheev E. A. Calculation of the wall thickness of cylindricalconical bunkers, Zapiski gornogo instituta, 2008, vol. 178, pp. 31—34. [In Russ].

24. Eduardo Rojas, Víctor Vergara, Rodrigo Soto. Case study: Discrete element modeling of wear in mining hoppers. Wear, Volumes 430–431, 2019, pp. 120—125, doi.org/10.1016/j. wear.2019.04.020.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.