Aerodynamic drag design for project mine shafts using methods of computational fluid dynamics

The aerodynamic drags in mine shafts are one of the critical parameters of ventilation networks in underground mines. Correct setting of aerodynamic drags defines accuracy of mathematical models of air distribution in mine ventilation networks. It is really difficult to determine the aerodynamic drag factors for the project mine shafts today because of the impossibility of direct full-scale measurements and due to the limited nature of the existing theoretical procedures developed in the mid-1900s. The latter is connected with the fact that, first, these procedures orient by the available reference data limited to the information on mine shafts 5–7 m in diameter, and, second, there is a very little knowledge on drags in shaft with tubing supports. Mine shafts being designed and constructed presently have an internal diameter from 8 to 10 m. For this reason, to determine the aerodynamic drag factors for the modern mine shafts, this article proposes to use the methods of computational fluid dynamics (CFDmodeling). Within the framework of the present study, 3D numerical models were developed for the cage and skip shafts of a project mine, with comprehensive picking of tubing support and project reinforcement. The calculations in Ansys Fluent show that air velocity distribution in a shaft is greatly nonuniform because of the influence of rigid reinforcement spacers. The numerical modeling yields that the aerodynamic drag factors in the cage and skip shafts, with regard to the project reinforcement, equal 0.0202 N·c2/m4 and 0.0514 N·c2/m4, respectively. The article proposes arrangements aimed at reducing the aerodynamic drags in the shafts, namely: realignment of tubing rings, use of concrete lining, reshaping of spacers, application of flexible rope bolting. The comparative analysis of the efficiency of the proposed measures is performed, and the eventually accepted variant of the mine shaft reinforcement allows the decrease in the aerodynamic drag factors by 34 and 44% in the cage and skip shafts, respectively. The inference is deduced on the applicability of CFD-modeling for determining the aerodynamic drags in non-standard mine shafts with regard to various reinforcement schemes.

Keywords: ventilation network, 3D mathematical model, boundary conditions, mine shaft, types of support, types of reinforcement, aerodynamic processes in shafts, aerodynamic drag factor.
For citation:

Levin L. Y., Maltsev S. V., Semin M. A., Kolesov E. V. Aerodynamic drag design for project mine shafts using methods of computational fluid dynamics. MIAB. Mining Inf. Anal. Bull. 2025;(5):100-117. [In Russ]. DOI: 10.25018/0236_1493_2025_5_0_100.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state contract, Projects Nos. 122030100425-6 and 124020500030-7.

Issue number: 5
Year: 2025
Page number: 100-117
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2025_5_0_100
Article receipt date: 08.08.2024
Date of review receipt: 05.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2025
About authors:

L.Y. Levin1, Corresponding Member of Russian Academy of Sciences, Dr. Sci. (Eng.), Deputy Director for Research, Head of Department, e-mail: aerolog_lev@mail.ru, ORCID ID: 0000-0003-0767-9207,
S.V. Maltsev1, Cand. Sci. (Eng.), Assistant Professor, Head of Sector, Perm National Research Polytechnic University, Perm, 614990, Russia, e-mail: st.v.maltsev@ya.ru,
ORCID ID: 0009-0002-9887-1455,
M.A. Semin1, Dr. Sci. (Eng.), Academic Secretary, Head of Laboratory, e-mail: seminma@inbox.ru, ORCID ID: 0000-0001-5200-7931,
E.V. Kolesov1, Cand. Sci. (Eng.), Researcher, e-mail: kolesovev@gmail.com, ORCID ID: 0000-0002-0755-7405,
1 Mining Institute of the Ural Branch of the Russian Academy of Sciences, Perm, 614007, Russia.

 

For contacts:

S.V. Maltsev, e-mail: st.v.maltsev@ya.ru.

Bibliography:

1. Mokhirev N. N., Rad'ko V. V. Inzhenernye raschety ventilyatsii shakht. Stroitel'stvo. Rekonstruktsiya. Ekspluatatsiya [Engineering calculations of mine ventilation. Construction. Reconstruction. Operation], Moscow, Nedra, 2007, 327 p.

2. Kruglov Yu. V. Modelirovanie sistem optimal'nogo upravleniya vozdukhoraspredeleniem v ventilyatsionnykh setyakh podzemnykh rudnikov [Modeling of optimal air distribution control systems in ventilation networks of underground mines], Candidate’s thesis, Perm, 2006, 20 p.

3. Mustel P. I. Determination of ventilation resistance coefficients for round mine shafts. Journal of Mining Institute. 1959, vol. 1, pp. 8—25. [In Russ].

4. Skochinskiy A. A., Ksenofontova A. I., Kharev A. A., Idel'chik I. E. Aerodinamicheskoe soprotivlenie shakhtnykh stvolov i sposoby ego snizheniya [Aerodynamic resistance of mine shafts and ways to reduce it], Moscow, Ugletekhizdat, 1953, 363 p.

5. Maltsev S. V., Semin M. A., Kormshchikov D. S. Method for determining the aerodynamic drag coefficients of mine shafts of copper-nickel mines. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2020, no. 6, pp. 170—178. [In Russ].

6. McPherson M. J. The resistance to airflow of mine shafts. Trans. 3rd US Mine Ventilation Symposium, Penn, 1987, pp. 465—477.

7. McPherson M. J. Subsurface ventilation and environmental engineering. Chapman & Hall, 2009, 824 p.

8. Perestoronin M. O., Parshakov O. S., Popov M. D. Parameterization of the ventilation network model in the analysis of emergency ventilation modes of mining systems. Mining Science and Technology (Russia). 2023, vol. 8, no. 2, pp. 150—161. [In Russ].

9. Liu M., Zhu C., Zhang H., Zheng W., You S., Campana P. E., Yan J. The environment and energy consumption of a subway tunnel by the influence of piston wind. Applied Energy. 2019, vol. 246, pp. 11—23.

10. Kobylkin S. S., Ushakov V. K., Kuznetsov I. I. Analysis of local resistance of mine workings for general mine aerodynamic resistance. Russian Mining Industry Journal. 2024, vol. 2, pp. 93—96. [In Russ]. DOI: 10.30686/1609-9192-2024-2-93-96.

11. Kobylkin S. S., Kuznetsov I. I., Fedorov D. A., Kobylkin A. S. Assessment of the influence of local and frontal aerodynamic resistance on air distribution in the ventilation network. Problemy i perspektivy kompleksnogo osvoeniya i sokhraneniya zemnykh nedr: Trudy 5-y Konferentsii Mezhdunarodnoy nauchnoy shkoly akademika RAN K.N. Trubetskogo [Problems and prospects for the integrated development and conservation of the earth's subsoil: Proceedings of the 5th Conference of the International Scientific School, Academician of the Russian Academy of Sciences K. N. Trubetskoy], Moscow, 2022, pp. 266—268. [In Russ].

12. Levin L. Yu., Semin M. A. Influence of shock losses on air distribution in underground mines. Journal of Mining Science. 2019, vol. 55, no. 2, pp. 287—296.

13. Mel'nik V. V., Fedorova M. A., Murin K. M., Bukhanik A. I., Malova S. A. Podzemnaya geotekhnologiya. Protsessy podzemnykh gornykh rabot v magistral'nykh transportnykh vyrabotkakh, stvolakh i na poverkhnosti shakhty [Underground geotechnology. Processes of underground mining in main transport workings, shafts and on the surface of the mine], Tula, Izd-vo TulGU, 2022, 68 p.

14. Zijun Li, Rongrong Li, Yu Jiao Xu, Yuanyuan Xu Study on the optimization and oxygen-enrichment effect of ventilation scheme in a blind heading of plateau mine. International Journal of Environmental Research and Public Health. 2022, vol. 19, no. 14, article 8717. DOI: 10.3390/ijerph19148717.

15. He D., Wang X., Guo C., Li H., Liu J. The analysis of the factors influencing the operation of the piston wind in the cage of the hybrid hoisting shaft and the simulation study of the operation effect. Tunnelling and Underground Space Technology. 2024, vol. 149, article 105799.

16. Zhang H., Falk L., Allen C. An application of computational fluid dynamics to predict shock loss factors at raise junctions in underground mine ventilation systems. Mining, Metallurgy & Exploration. 2024, vol. 41, no. 3, pp. 1155—1170.

17. Kempson W. J., Webber-Youngman R. C. W., Meyer J. P. Optimizing shaft pressure losses through computational fluid dynamics modelling. Journal of the Southern African Institute of Mining and Metallurgy. 2013, vol. 113, no. 12, pp. 931—939. DOI: 10.1016/j.applthermaleng.2015.04.058.

18. He D., Wang X., Guo C., Li H., Zhang Y. Study on the influence of the cage lifting piston effect in main intake shafts on air flow in transportation lanes. Applied Sciences. 2023, vol. 13, no. 3, article 1419. DOI: 10.3390/app13031419.

19. Huang H., Sun T., Zhang G., Li D., Wei H. Evaluation of a developed SST k- turbulence model for the prediction of turbulent slot jet impingement heat transfer. International Journal of Heat and Mass Transfer. 2019, vol. 139, pp. 700—712.

20. Duan Y., Zheng Q., Jiang B. Use of computational fluid dynamics to implement an aerodynamic inverse design method based on exact Riemann solution and moving wall boundary. Engineering Applications of Computational Fluid Mechanics. 2020, vol. 14, no. 1, pp. 284—298.

21. Mal'tsev S. V. Issledovanie i razrabotka sposobov opredeleniya aerodinamicheskikh parametrov slozhnykh ventilyatsionnykh sistem podzemnykh rudnikov [Research and development of methods for determining the aerodynamic parameters of complex ventilation systems in underground mines], Candidate’s thesis, Perm, 2020, 24 p.

22. Brake D. J. Mine ventilation: a practitioner’s manual. Brisbane, Australia: Mine Ventilation, 2012, 791 p.

23. Zhou Y.-C., Liu J.-H., Huang S., Yang H.-T., Ji H.-G. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Construction and Building Materials. 2020, vol. 230, article 116909. DOI: 10.1016/j.conbuildmat.2019.116909.

24. Rudnichnaya ventilyatsiya. Spravochnik. Pod red. K.Z. Ushakova [Mine ventilation. Guide. Ushakov K. Z. (Ed.)], Moscow, Nedra, 1988, 440 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.