Bibliography: 1. Mokhirev N. N., Rad'ko V. V. Inzhenernye raschety ventilyatsii shakht. Stroitel'stvo. Rekonstruktsiya. Ekspluatatsiya [Engineering calculations of mine ventilation. Construction. Reconstruction. Operation], Moscow, Nedra, 2007, 327 p.
2. Kruglov Yu. V. Modelirovanie sistem optimal'nogo upravleniya vozdukhoraspredeleniem v ventilyatsionnykh setyakh podzemnykh rudnikov [Modeling of optimal air distribution control systems in ventilation networks of underground mines], Candidate’s thesis, Perm, 2006, 20 p.
3. Mustel P. I. Determination of ventilation resistance coefficients for round mine shafts. Journal of Mining Institute. 1959, vol. 1, pp. 8—25. [In Russ].
4. Skochinskiy A. A., Ksenofontova A. I., Kharev A. A., Idel'chik I. E. Aerodinamicheskoe soprotivlenie shakhtnykh stvolov i sposoby ego snizheniya [Aerodynamic resistance of mine shafts and ways to reduce it], Moscow, Ugletekhizdat, 1953, 363 p.
5. Maltsev S. V., Semin M. A., Kormshchikov D. S. Method for determining the aerodynamic drag coefficients of mine shafts of copper-nickel mines. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2020, no. 6, pp. 170—178. [In Russ].
6. McPherson M. J. The resistance to airflow of mine shafts. Trans. 3rd US Mine Ventilation Symposium, Penn, 1987, pp. 465—477.
7. McPherson M. J. Subsurface ventilation and environmental engineering. Chapman & Hall, 2009, 824 p.
8. Perestoronin M. O., Parshakov O. S., Popov M. D. Parameterization of the ventilation network model in the analysis of emergency ventilation modes of mining systems. Mining Science and Technology (Russia). 2023, vol. 8, no. 2, pp. 150—161. [In Russ].
9. Liu M., Zhu C., Zhang H., Zheng W., You S., Campana P. E., Yan J. The environment and energy consumption of a subway tunnel by the influence of piston wind. Applied Energy. 2019, vol. 246, pp. 11—23.
10. Kobylkin S. S., Ushakov V. K., Kuznetsov I. I. Analysis of local resistance of mine workings for general mine aerodynamic resistance. Russian Mining Industry Journal. 2024, vol. 2, pp. 93—96. [In Russ]. DOI: 10.30686/1609-9192-2024-2-93-96.
11. Kobylkin S. S., Kuznetsov I. I., Fedorov D. A., Kobylkin A. S. Assessment of the influence of local and frontal aerodynamic resistance on air distribution in the ventilation network. Problemy i perspektivy kompleksnogo osvoeniya i sokhraneniya zemnykh nedr: Trudy 5-y Konferentsii Mezhdunarodnoy nauchnoy shkoly akademika RAN K.N. Trubetskogo [Problems and prospects for the integrated development and conservation of the earth's subsoil: Proceedings of the 5th Conference of the International Scientific School, Academician of the Russian Academy of Sciences K. N. Trubetskoy], Moscow, 2022, pp. 266—268. [In Russ].
12. Levin L. Yu., Semin M. A. Influence of shock losses on air distribution in underground mines. Journal of Mining Science. 2019, vol. 55, no. 2, pp. 287—296.
13. Mel'nik V. V., Fedorova M. A., Murin K. M., Bukhanik A. I., Malova S. A. Podzemnaya geotekhnologiya. Protsessy podzemnykh gornykh rabot v magistral'nykh transportnykh vyrabotkakh, stvolakh i na poverkhnosti shakhty [Underground geotechnology. Processes of underground mining in main transport workings, shafts and on the surface of the mine], Tula, Izd-vo TulGU, 2022, 68 p.
14. Zijun Li, Rongrong Li, Yu Jiao Xu, Yuanyuan Xu Study on the optimization and oxygen-enrichment effect of ventilation scheme in a blind heading of plateau mine. International Journal of Environmental Research and Public Health. 2022, vol. 19, no. 14, article 8717. DOI: 10.3390/ijerph19148717.
15. He D., Wang X., Guo C., Li H., Liu J. The analysis of the factors influencing the operation of the piston wind in the cage of the hybrid hoisting shaft and the simulation study of the operation effect. Tunnelling and Underground Space Technology. 2024, vol. 149, article 105799.
16. Zhang H., Falk L., Allen C. An application of computational fluid dynamics to predict shock loss factors at raise junctions in underground mine ventilation systems. Mining, Metallurgy & Exploration. 2024, vol. 41, no. 3, pp. 1155—1170.
17. Kempson W. J., Webber-Youngman R. C. W., Meyer J. P. Optimizing shaft pressure losses through computational fluid dynamics modelling. Journal of the Southern African Institute of Mining and Metallurgy. 2013, vol. 113, no. 12, pp. 931—939. DOI: 10.1016/j.applthermaleng.2015.04.058.
18. He D., Wang X., Guo C., Li H., Zhang Y. Study on the influence of the cage lifting piston effect in main intake shafts on air flow in transportation lanes. Applied Sciences. 2023, vol. 13, no. 3, article 1419. DOI: 10.3390/app13031419.
19. Huang H., Sun T., Zhang G., Li D., Wei H. Evaluation of a developed SST k- turbulence model for the prediction of turbulent slot jet impingement heat transfer. International Journal of Heat and Mass Transfer. 2019, vol. 139, pp. 700—712.
20. Duan Y., Zheng Q., Jiang B. Use of computational fluid dynamics to implement an aerodynamic inverse design method based on exact Riemann solution and moving wall boundary. Engineering Applications of Computational Fluid Mechanics. 2020, vol. 14, no. 1, pp. 284—298.
21. Mal'tsev S. V. Issledovanie i razrabotka sposobov opredeleniya aerodinamicheskikh parametrov slozhnykh ventilyatsionnykh sistem podzemnykh rudnikov [Research and development of methods for determining the aerodynamic parameters of complex ventilation systems in underground mines], Candidate’s thesis, Perm, 2020, 24 p.
22. Brake D. J. Mine ventilation: a practitioner’s manual. Brisbane, Australia: Mine Ventilation, 2012, 791 p.
23. Zhou Y.-C., Liu J.-H., Huang S., Yang H.-T., Ji H.-G. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Construction and Building Materials. 2020, vol. 230, article 116909. DOI: 10.1016/j.conbuildmat.2019.116909.
24. Rudnichnaya ventilyatsiya. Spravochnik. Pod red. K.Z. Ushakova [Mine ventilation. Guide. Ushakov K. Z. (Ed.)], Moscow, Nedra, 1988, 440 p.