Calculation of burden by the first row of blastholes in complex-structure rock mass blasting with regard to cracked zone radii

In quarrying construction materials, especially in excavation of granite for building purposes, subsoil users face the problem connected with high oversize amount generated in blasting of structurally complex rock masses. Such rock masses possess complex morphology and nonuniform block structure, and a blasting site can contain different type rocks with highly variable jointing. For another thing, granite itself can have differing properties, which even more complicates blasting and worsens uniformity of fragmentation. As a result of weakening of such complex-structure rock mass by energy of explosions, generation of oversize fractions is highly probable. Together with zones of unstable fragmentation and block detachment, oversize fragments are often generated in the region of the first row of blastholes. This article continues the research aimed at improved quality of rock fragmentation by blasting through introduction of structural peculiarities of rock mass into consideration. The article sets forth theoretical calculations, approaches and features of computation of burden by the first row of blastholes in blasting of structurally complex rock masses with regard to the change in the strength of rocks depending on the rate of their jointing, which, in its turn, influences the size of the cracked zones.

Keywords: blast, broken rock mass, open pit mining, jointing, fracturing, grain size composition, structurally complex rock mass, burden, oversize yield.
For citation:

Isheisky V. A., Ryadinskii D. E., Magomedov G. S. Calculation of burden by the first row of blastholes in complex-structure rock mass blasting with regard to cracked zone radii. MIAB. Mining Inf. Anal. Bull. 2025;(3):64-79. [In Russ]. DOI: 10.25018/0236_1493_ 2025_3_0_64.

Acknowledgements:
Issue number: 3
Year: 2025
Page number: 64-79
ISBN: 0236-1493
UDK: 622.235.5
DOI: 10.25018/0236_1493_2025_3_0_64
Article receipt date: 02.09.2024
Date of review receipt: 16.12.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2025
About authors:

Ишейский Валентин Александрович1 — канд. техн. наук, доцент, e-mail: Isheyskiy_VA@pers.spmi.ru, ORCID ID: 0000-0003-1007-6562,
Рядинский Даниил Эдуардович1 — аспирант, e-mail: riadinskii.d@mail.ru, ORCID ID: 0000-0002-5765-1811,
Магомедов Гаджи Сиражудинович — генеральный директор, АО «Гавриловское карьероуправление», e-mail: aogku@yandex.ru,
1 Санкт-Петербургский горный университет императрицы Екатерины II.

 

For contacts:

V.A. Isheisky, Isheyskiy_VA@pers.spmi.ru.

Bibliography:

1. Isheisky V. A., Ryadinskii D. E., Magomedov G. S. Increasing the quality of fragmentation of blasting rock mass based on accounting for structural features of massif in the blast design. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 79—95. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_79.

2. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021, vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/PMI.2021.3.2.

3. Оchilov Sh. А., Маkhmudоv D. R., Nizamova А. Т., Norinov S. S., Umirzokov А. А. Methods for calculating the parameters of drilling and blasting operations based on the primary determination of the zones of destruction of the rock mass. E3S Web of Conferences. 2024, vol. 491, article 02014. DOI: 10.1051/e3sconf/202449102014.

4. Kochanov A. N., Odintsev V. N. Wave pre-destruction of solid rocks under blasting. Fizikotekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2016, no. 6, pp. 38—48. [In Russ].

5. Kabetenov T., Yusupov K. A., Rustemov S. T. Rational parameters of blasting, considering action time of explosion-generated pulse. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2015, no. 2, pp. 75—81. [In Russ].

6. Egorov V. V., Volokitin A. N., Ugolnikov N. V., Sokolovsky A. V. Justification of parameters and technology of drilling and blasting operations to ensure the required lumpiness. Russian Mining Industry Journal. 2021, no. 3, pp. 110—115. [In Russ]. DOI: 10.30686/1609-9192-2021-3-110-115.

7. Tsirel S. V., Pavlovich A. A., Melnikov N. Ya. Substantiation of pitwall parameters in rock mass with steeply dipping bedding. Gornyi Zhurnal. 2023, no. 5, pp. 49—54. [In Russ]. DOI: 10.17580/ gzh.2023.05.07.

8. Marinin M. A., Evgrafov M. V., Dolzhikov V. V. Production of blasting operations for a given granulometric composition of ore within the concept of “mine-to-mill”: current state and prospects. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 7, pp. 65—74. [In Russ]. DOI: 10.18799/24131830/2021/7/3264.

9. Nasirov U. F., Zairov Sh. Sh., Mekhmonov M. R., Fatkhiddinov A. U. Controlling blast energy parameters to ensure intensive open-pit rock fragmentation. Mining Science and Technology (Russia). 2022, vol. 7, no. 2, pp. 137—149. [In Russ]. DOI: 10.17073/2500-0632-2022-2-137-149.

10. Chenxi D., Renshu Y., Chun F. Stress wave superposition effect and crack initiation mechanism between two adjacent boreholes. International Journal of Rock Mechanics & Mining Sciences. 2021, vol. 138, pp. 104—122. DOI: 10.1016/j.ijrmms.2021.104622.

11. Saadoun A., Fredj M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study. Journal of Mining Institute. 2022, vol. 257, pp. 822—832. [In Russ]. DOI: 10.31897/ pmi.2022.84.

12. Hashemi A., Katsabanis P. The effect of stress wave interaction and delay timing on blast-induced rock damage and fragmentation. Rock Mechanics and Rock Engineering. 2020, vol. 53, pp. 2327—2346. DOI: 10.1007/s00603-019-02043-9.

13. Dehghani H., Babanouri N., Alimohammadnia F., Kalhori M. Blast-induced rock fragmentation in wet holes. Mining, Metallurgy & Exploration. 2020, vol. 37, pp. 743—752. DOI: 10.1007/s42461019-00163-y.

14. Demidyuk G. P. Regulation of blast action during hard rock jackhammering. Explosion technology. 1974, no. 73/30, pp. 210—224. [In Russ].

15. Panasiuk A., Davydova I., Shlapak V., Levytskyi V. Research of borehole drilling parameters for determining the optimum size of granite stone blocks. IOP Conference Series: Earth and Environmental Science. 2023, vol. 1254, article 012060. DOI: 10.1088/1755-1315/1254/1/012060.

16. Kong D., Saroglou C., Wu F., Sha P., Li B. Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 141, article 104729. DOI: 10.1016/j. ijrmms.2021.104729.

17. Buyer A., Aichinger S., Schubert W. Applying photogrammetry and semi-automated joint mapping for rock mass characterization. Engineering Geology. 2020, vol. 264, article 105332. DOI: 10.1016/ j.enggeo.2019.105332.

18. Adjiski V., Panov Z., Popovski R., Stefanovska R. Application of photogrammetry for determination of volumetric joint count as a measure for improved rock quality designation (RQD) index. Sustainable Extraction and Processing of Raw Materials Journal. 2021, vol. 2, no. 1, pp. 12—20. DOI: 10.5281/zenodo.5594940.

19. Kovalevich S. V., Zyryanov I. V., Chernobyl V. I. Experience of drilling-and-blasting in diamond fields in Yakutia. Journal of Mining Science. 2022, vol. 58, no. 6, pp. 953—966. DOI: 10.1134/ S1062739122060102.

20. Menzhulin M. G., Khoreva A. Yu., Afanasiev P. I., Tyulkin S. A. Drilling and blasting parameters for Gavrilovo granite deposit. Gornyi Zhurnal. 2017, no. 1, pp. 42—46. [In Russ]. DOI: 10.17580/ gzh.2017.01.08.

21. Skublov S. G., Petrov D. A., Galankina O. L., Levashova E. V., Rogova I. V. Th-rich zircon from a pegmatite vein hosted in the Wiborg Rapakivi granite massif. Geosciences. 2023, vol. 13, no. 12, article 362. DOI: 10.3390/geosciences13120362.

22. Kovalevsky V. N., Mysin A. V. Performance of tubular elastic charges in natural stone production. MIAB. Mining Inf. Anal. Bull. 2023, no. 1, pp. 20—34. [In Russ]. DOI: 10.25018/ 0236_1493_ 2023_1_0_20.

23. Erofeev I. E. Povyshenie effektivnosti burovzryvnykh rabot na rudnikakh [Increasing the efficiency of drill-and-blast operations in mines], Moscow, Nedra, 1988, pp. 46—54.

24. Khanukaev A. N. Fizicheskie protsessy pri otboyke gornykh porod vzryvom [Physical processes in the breaking of rocks by explosion], Moscow, Nedra, 1974, 222 p.

25. Kononenko M., Khomenko O., Savchenko M., Kovalenko I. Method for calculation of drillingand-blasting operations parameters for emulsion explosives. Mining of Mineral Deposits. 2019, vol. 13, no. 3, pp. 22—30. DOI: 10.33271/mining13.03.022.

26. Vokhmin S. A., Kurchin G. S., Kirsanov A. K., Deryagin P. A. Calculation of parameters of drilling and blasting operations for horizontal and incline working. Vestnik of Nosov Magnitogorsk State Technical University. 2014, no. 4(48), pp. 5—9. [In Russ].

27. Borovikov V. A., Vanyagin I. F. On calculation of stress wave parameters upon explosion of elongated charge in rocks. Explosion technology. 1976, no. 76/33, pp. 39—43. [In Russ].

28. Legostaev E. G. Issledovanie vliyaniya ob"emnoiy kontsentratsii energii zaryada VV na effektivnost' pryamykh vrubov v krepkikh porodakh [Investigation of the influence of the volumetric concentration of the explosive charge energy on the efficiency of direct cuttings in strong rocks], Candidate’s thesis, Moscow, 1967, 22 p.

29. Roy P. P. Rock blasting: effects and operations. CRC Press, 2005, pp. 1—37.

30. Zhang P., Duan J., Wang M., Guo J. Research and application of chassis resistance line of rock breaking mechanism. Academic Journal of Engineering and Technology Science. 2019, vol. 2, no. 3, pp. 98—107. DOI: 10.25236/AJETS.020060.

31. Vozgrin R. A. Povyshenie kachestva drobleniya gornoy massy pri primenenii skvazhinnykh zaryadov emul'sionnykh vzryvchatykh veshchestv umen'shennogo diametra [Improving the quality of crushing rock mass in the application of borehole charges emulsion explosives of reduced diameter], Candidate’s thesis, Moscow, 2015, 21 p.

32. Vinogradov Y. I., Khokhlov S. V., Zigangirov R. R., Miftakhov A. A., Suvorov Y. I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure. Journal of Mining Institute. 2024, vol. 266, pp. 231—245. [In Russ].

33. Torbica S., Lapcevic V. Rock breakage by explosives. European International Journal of Science and Technology. 2014, vol. 3, no. 2, pp. 96—104.

34. Khokhlov S. V., Vinogradov Yu. I., Makkoev V. A., Abiyev Z. A. Effect of explosive detonation velocity on the degree of rock pre-fracturing during blasting. Mining Science and Technology (Russia). 2024, no. 9—2, pp. 85—96. [In Russ]. DOI: 10.17073/2500-0632-2023-11-177.

35. Marinin M. A., Afanasyev P. I., Sushkova V. I., Ustimenko K. D., Akhmetov A. R. The experience of using the Kuz-Ram model in describing of grain size distribution of blasted rock mass. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 96—109. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_96.

36. Zhang Z. X., Sanchidrián A. J., Ouchterlony F., Luukkanen S. Reduction of fragment size from mining to mineral processing. A review. Rock Mechanics and Rock Engineering. 2023, vol. 56, pp. 747—778. DOI: 10.1007/s00603-022-03068-3.

37. Mutinda E. K., Alunda B. O., Maina D. K., Kasomo R. M. Prediction of rock fragmentation using the Kuznetsov—Cunningham—Ouchterlony model. Journal of the Southern African Institute of Mining and Metallurgy. 2021, vol. 121, no. 3, pp. 107—112. DOI: 10.17159/2411-9717/1401/2021.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.