Optimization of geometry design of quasi-rectangular section tunnel by the force criterion

The noncircular section tunnels are finding increasingly more often application in shield tunneling due to the advantageously high section utilization efficiency. For instance, a quasi-rectangular section tunnel in Ningbo Rail Transit in China. At the same time, the scientific researches lack guidelines on the optimum shape design for the noncircular section tunnels by the force criterion. This article puts forward an approach to optimizing geometry of a double-track quasi-rectangular section tunnel. The stress–strain analysis of the tunnel lining used the Hyperstatic Reaction Method. Furthermore, the search algorithm is proposed for the optimized quasi-rectangular section tunnel geometry based on the analysis of the integral indicators of stresses, axial forces and bending moments in the tunnel lining.

Keywords: tunnel, optimization, stress state, lining, rock–lining interaction, quasi-rectangular section, section geometry, construction, shield tunneling.
For citation:

Nguyen Tai Tien, Karasev M. A. Optimization of geometry design of quasi-rectangular section tunnel by the force criterion. MIAB. Mining Inf. Anal. Bull. 2021;(6):59-71. [In Russ]. DOI: 10.25018/0236_1493_2021_6_0_59.

Acknowledgements:
Issue number: 6
Year: 2021
Page number: 59-71
ISBN: 0236-1493
UDK: 624.19
DOI: 10.25018/0236_1493_2021_6_0_59
Article receipt date: 08.12.2020
Date of review receipt: 18.12.2020
Date of the editorial board′s decision on the article′s publishing: 10.05.2021
About authors:

Nguyen Tai Tien1, Graduate Student, e-mail: taitien12@gmail.com,
M.A. Karasev1, Dr. Sci. (Eng.), Assistant Professor, e-mail: karasevma@gmail.com,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

M.A. Karasev, e-mail: karasevma@gmail.com.

Bibliography:

1. Sammal' A. S., Fotieva N. N., Bulychev N. S., Khrenov S. I. Design of tunnel lining with variavle thickness located new ground surface. Journal of Mining Institute. 2004, vol. 156, pp. 24. [In Russ].

2. Bezrodnyy K. P., Lebedev M. O. Earth pressure and lining design for deep tunnels. Journal of Mining Institute. 2017, vol. 228, pp. 649—653. [In Russ].

3. Protosenya A. G., Iovlev G. А. Assessment of lining stress state based on the nonlinear behavior of soil mass. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2020, no. 2, pp. 215—228. [In Russ].

4. Protosenya A. G., Iovlev G. А. Prediction of spatial stress–strain behavior of physically nonlinear soil mass in tunnel face area. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 128—139. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-128-139.

5. Demenkov P. A., Shubin A. A. Improvement of structures, geomechanical substantiation and development of technology for the construction of a column-type subway station. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2016, no. 1, pp. 131—138. [In Russ].

6. Gospodarikov A. P., Zatsepin M. A. Mathematical modeling of boundary problems in geomechanics. Gornyi Zhurnal. 2019, no. 12, pp. 16—20. [In Russ].

7. Li J. Key technologies and applications of the design and manufacturing of non-circular TBMs. Engineering. 2017, vol. 3, no. 6, pp. 905—914.

8. Krcík M. Non-circular full face tunnel boring machines — 21st century challenge. Underground Space: the 4th Dimension of Metropolises, Prague, Czech Republic, 2007.

9. Zhang C., Li W., Zhu W., Tan Z. Face stability analysis of a shallow horseshoe-shaped shield tunnel in clay with a linearly increasing shear strength with depth. Tunnelling and Underground Space Technology. 2020, vol. 97.

10. Du D., Dias D., Do N. Designing U-shaped tunnel linings in stratified soils using the hyperstatic reaction method. European Journal of Environmental and Civil Engineering. 2018, pp. 1—18.

11. Du D., Dias D., Do N. Lining performance optimization of sub-rectangular tunnels using the hyperstatic reaction method. Computers and Geotechnics. 2019, vol. 117.

12. Do N. A., Dias D., Zhang Z., Huang X., Nguyen T. T., Pham V. V., O. Nait-Rabah Study on the behavior of squared and sub-rectangular tunnels using the Hyperstatic Reaction Method. Transportation Geotechnics. 2020, vol. 22.

13. Nguyen T. T., Karasev M. A., Vilner M. A. Study of the stress-strain state in the subrectangular tunnel. Geotechnics for Sustainable Infrastructure Development. Hanoi, 2019.

14. Abdellah W. R., Ali M. A., Yang H.-S. Studying the effect of some parameters on the stability of shallow tunnels. Journal of Sustainable Mining. 2018, vol. 17, no.1, pp. 20—33. DOI: 10.1016/j.jsm.2018.02.001.

15. Rostami A., Asghari N., Ziarati M. A., Jahani S., Shahi B. Investigating effect of tunnel gate investigating effect of tunnel gate inserted forces on its coverage and soil surface settlement. Journal of Civil Engineering. 2016, vol. pp. 358—369.

16. Huang X., Zhua Y., Zhanga Z., Zhuc Y., Wang S., Zhuang Q. Mechanical behaviour of segmental lining of a sub-rectangular shield tunnel under self-weight. Tunnelling and Underground Space Technology. 2018, vol. 74, pp. 131—144.

17. Liu X., Ye Y., Liu Z., Huang D. Mechanical behavior of Quasi-rectangular segmental tunnel linings: First results from full-scale ring tests. Tunnelling and Underground Space Technology. 2018, vol. 71, pp. 440–453.

18. Liu X., Liu Z., Ye Y., Bai Y., Zhu Y. Mechanical behavior of quasi-rectangular segmental tunnel linings: Further insights from full-scale ring tests. Tunnelling and Underground Space Technology. 2018, vol. 79, pp. 304–318.

19. Oreste P. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports. Tunnelling and Underground Space Technology. 2007, vol. 22, pp. 185— 205.

20. Do N. A., Dias D., Oreste P. 2D seismic numerical analysis of segmental tunnel lining behaviour. Bulletin of the New Zealand Society for Earthquake Engineering. 2014, vol. 47, no. 3, pp. 1—11.

21. Du D., Dias D., Do N. A., Oreste P. P. Hyperstatic reaction method for the design of U-shaped tunnel supports. International Journal of Geomechanics. 2018, vol. 18, no. 6.

22. Gospodarikov A. P., Nguyen C. T. Hyperstatic reaction method for calculations of tunnels with horseshoe-shaped cross-section under the impact of earthquakes. Earthquake Engineering and Engineering Vibration. 2020, no. 19, pp. 179—188.

23. Do N. A., Dias D., Oreste P., Maigrea I. D. The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method. European Journal of Environmental and Civil Engineering. 2014, vol. 18, no. 4, pp. 489—510.

24. Chen K., Peng F. L. An improved method to calculate the vertical earth pressure for deep shield tunnel in Shanghai soil layers. Tunnelling and Underground Space Technology. 2018, vol. 75, pp. 43—66.

25. Takano Y. H. Guidelines for the design of shield tunnel lining. Tunneling and Underground Space Technology. 2000, vol. 15, no. 3, pp. 303—331.

26. TCVN Ham đuong sat và ham đuong ô tô — Tiêu chuan thiêt kê. 4527—1988.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.