Prediction and analysis model of explosive and inflammable gas accumulation in air in oil mines

The working conditions in mines in viscous oil fields are characterized, and the risks related with underground explosions of steam and gas/air mixtures are identified. The relevance and the objective of the research are formulated and substantiated on the basis of the review of legal, scientific and technical documentation in use in oil recovery and in other mining industries, as well as the other information sources that address the issues of underground oil recovery. The goal of the research is to develop a methodological approach to the explosion hazard prediction in oil mine air, and to determine the operational conditions predisposed to origination of an explosion hazard in mine air. One of the components of the research procedure is a method proposed by the authors, which consists in mathematical modeling of dilution of explosive chemical agents with fresh air. From the experimental evidence, the authors put forward an algorithm for estimating explosive hazard of air in oil mines. The algorithm uses the method of predictive calculation of explosive chemical agent concentrations in mine air. The influence of physically bound water content in oil emulsions on the lower value of the flame spread temperature range is determined. The experimental results prove the ability of high viscous oil to generate explosive steam and gas/air mixtures as a result of heating under conditions of underground fires. Finally, the article gives the conclusions and recommendations on using the research findings in management of professional risks associated with explosions of steam and gas/air mixtures in oil mines.

Keywords: oil mine, viscous oil recovery, industrial safety, occupational safety, professional risk assessment, mine air, explosion hazard prediction, explosion/fire hazard of oil products, oil emulsions.
For citation:

Myakov V. V., Korshunov G. I., Kabanov E. I., Rodionov V. A. Prediction and analysis model of explosive and inflammable gas accumulation in air in oil mines. MIAB. Mining Inf. Anal. Bull. 2024;(10):136-151. [In Russ]. DOI: 10.25018/0236_1493_2024_10_0_136.

Acknowledgements:
Issue number: 10
Year: 2024
Page number: 136-151
ISBN: 0236-1493
UDK: 622.276.55;622.81
DOI: 10.25018/0236_1493_2024_10_0_136
Article receipt date: 18.06.2024
Date of review receipt: 22.07.2024
Date of the editorial board′s decision on the article′s publishing: 10.09.2024
About authors:

V.V. Myakov1, Graduate Student, e-mail: s215061@stud.spmi.ru, ORCID ID: 0000-0002-3144-980X,
G.I. Korshunov1, Dr. Sci. (Eng.), Professor, e-mail: Korshunov_GI@pers.spmi.ru, ORCID ID: 0000-0003-2074-9695,
E.I. Kabanov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Kabanov_EI@pers.spmi.ru, ORCID ID: 0000-0001-7580-9099,
V.A. Rodionov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Rodionov_VA@spmi.pers.ru, ORCID ID: 0000-0003-2398-5829,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

V.V. Myakov, e-mail: s215061@stud.spmi.ru.

Bibliography:

1. Fomin A. I., Grunskoy T. V. Methodical recommendations on the assessment of the risk of occupational diseases in underground personnel at thermal shaft method of extraction of high-viscosity oil. Bulletin of Scientific center VostNII for Industrial and Environmental Safety. 2019, no. 1, pp. 82—89. [In Russ]. DOI: 10.25558/VOSTNII.2019.18.99.008.

2. Alabyev V. R., Kruk M. N., Bazhina T. P., Semenov A. S., Demin V. I. Economic efficiency of the application of artificial air cooling for normalization of thermal conditions in oil mines. Scientia Iranika. 2020, vol. 27, no. 3, pp. 1606—1615. DOI: 10.24200/SCI.2018.50549.1753.

3. Galkin A. F., Kurta I. V., Pankov V. Yu., Ilinov M. D. Oil flow influence on accuracy of forecasting mine air temperatures. Oil Industry Journal. 2020, no. 4, pp. 98—100. [In Russ]. DOI: 10.24887/00282448-2020-4-98—100.

4. Abashin A. N. , Rudakov M. L., Stepanov I. S. Assessment of the occupational risk conditioned by heating microclimate in the mine workings of Yaregsky deposit oil mines. Occupational Safety in Industry. 2018, no. 7, pp. 67—73. [In Russ]. DOI: 10.24000/0409-2961-2018-7-67-73.

5. Fomin A. I., Zhuikov A. E., Grunskoy T. V. Research of results of medical examinations for assessment of risk of professional diseases of workers involved in thermal mining oil production conditions. Bulletin of Scientific center VostNII for Industrial and Environmental Safety. 2021, no. 4, pp. 58—66. [In Russ]. DOI: 10.25558/VOSTNII.2021.20.11.006.

6. Grunskoy T. V., Kaplina M. V., Sokhodon G. V. Assessment of severity and tension of labour at workplaces of underground personnel of Yaregskiye oil mines. Resources of the European North. Exploration Technologies and Economics. 2017, no. 3, pp. 35—55. [In Russ].

7. Fomin A. N. , Nor E. V., Grunskoy T. V. Considering the synergetic effects at occupational risk assessment in oil mines. Occupational Safety in Industry. 2021, no. 9, pp. 89—94. [In Russ]. DOI: 10.24000/0409-2961-2021-9-89-94.

8. Myakov V. V., Korshunov G. I., Kabanov E. I. Analysis of working conditions of employees engaged in thermal shaft extraction of high-viscosity oil. XXI century: Resumes of the Past and Challenges of the Present plus. 2023, vol. 12, no. 4(64), pp. 222—228. [In Russ].

9. Sednev D. Reconstruction of oil mines No. 1, 2 and 3. Relationship of industrial fatalities and quality of design documentation fulfilment. Analysis of errors. Gornoe ekho. 202, no. 1(82), pp. 139—142. [In Russ]. DOI: 10.7242/ echo.2021.1.25.

10. Konoplev Y. P., Demchenko A. G., Demchenko A. A. Oil mine — a technology that is capable of providing half of oil production in the 21st century in the open and developed fields of Russia. Nedropolzovanie XXI vek. 2020, no. 1(83), pp. 46—55. [In Russ].

11. Nguyen M. T., Nguyen D. L. T., Xia C., Nguyen T. B., Shokouhimehr M., Sana S. S., Grace A. N., Aghbashlo M., Tabatabaei M., Sonne C., Kim S. Y., Lam S. S., Le Q. V. Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives. Fuel Processing Technology. 2021, vol. 213, article 106681. DOI: 10.1016/j.fuproc.2020.106681.

12. Vorobiev A. E., Dzhimieva R. B. Innovative technologies of development of deposits of combustible slate and high-viscosity oil mining. RUDN Journal of Engineering Research. 2009, no. 3, pp. 5—16. [In Russ].

13. Sytnik S. S., Marinin S. Y. Research results of the fire safety state at oil-refining objects. Scientific Works of the Kuban State Technological University. 2019, no. 7, pp. 370—386. [In Russ].

14. Khodzhaeva G. K. Otsenka riska avariynosti nefteprovodnykh sistem v aspekte geodinamicheskikh protsessov: Monografiya [Accident risk assessment of oil pipeline systems in the aspect of geodynamic processes], Nizhnevartovsk, 2016, 132 p.

15. Duplyakov G. S., Elfimova M. V., Peshkov A. V. Analysis of occurrence of accidents, followed by fire and explosion in the warehouses of petroleum and petroleum products. Siberian Fire and Rescue Bulletin. 2020, no. 1(16), pp. 42—47. [In Russ].

16. Nazarov V. P., Korolchenko D. A., Shvyrkov S. A., Tangiev M. M., Petrov A. P. Features of assessing the level of fire and explosion safety of tanks before hot works. Fire and Explosion Safety. 2021, no. 6, pp. 52—60. [In Russ]. DOI: 10.22227/0869-7493.2021.30.06.52-60.

17. Pshenin V. V., Zakirova G. S. Improving the efficiency of oil vapor recovery units in the commodity transport operations at oil terminals. Journal of Mining Institute. 2024, vol. 265, pp. 121—128. [In Russ]. DOI: 10.31897/PMI.2023.29.

18. Rubtsov V. V., Le Viet Hai, Tran Van Han. Experimental evaluation of the formation of an explosive environment over the floating roof of an oil storage tank during pumping out of a neighboring tank in case of fire. Technology of technosphere safety. 2022, no. 1(95), pp. 8—21. [In Russ]. DOI: 10.25257/TTS.2022.1.95.8-21.

19. Kobylkin N. I. Analiz prichin vzryvov tsistern i rezervuarov pri peregruzke nefteproduktov [Analysis of the causes of explosions of tanks and reservoirs during oil products reloading], available at: https://www.prompribor.ru/images/o_kompanii/statyi/analiz_vzrivov.pdf (accessed 10.06.2024). [In Russ].

20. Shaverdo O. V., Biruk V. A., Korotkevich S. G. Analysis of causes of ignition of gas-vapour mixtures of light oil products during tank-truck filling. Emergency Situations: Prevention and Elimination. 2023, no. 2(54), pp. 79—87. [In Russ]. DOI: 10.54422/1994-439X.2023.2-54.79-87.

21. Kluban V. S., Le Viet Hai, Nguyen Le Duy, Panasevich L. T. Fire hazard assessment of oil storage tank farms in the Socialist Republic of Vietnam. Grazhdanskaya oborona na strazhe mira i bezopasnosti: Materialy IV Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy Vsemirnomu dnyu grazhdanskoy oborony [Civil Defence at the Guard of Peace and Security: Proceedings of the IV International Scientific and Practical Conference on the World Day of Civil Defence], Мoscow, 2020, pp. 285—294. [In Russ].

22. Balovtsev S. V. Monitoring of aerological risks of accidents in coal mines. Mining Science and Technology (Russia). 2023, vol. 8, no. 4, pp. 350—359. [In Russ]. DOI: 10.17073/2500-0632-2023-10-163.

23. Rybichev A. A. On the question of evaluation of the influence of heavy hydrocarbons on the explosibility of dust-methane-air mixtures. Ugol'. 2023, no. 2, pp. 41—44. [In Russ]. DOI: 10.18796/00415790-2023-2-41-44.

24. Juganda A., Strebinger C., Brune J. F., Gregory E. B. Computational fluid dynamics modeling of a methane gas explosion in a full-scale, underground longwall coal mine. Mining, Metallurgy & Exploration. 2022, vol. 39, pp. 897—916. DOI: 10.1007/s42461-022-00587-z.

25. Wang H., Cheng S., Wang H., He J., Fan L., Danilov A. S. Synthesis and properties of coal dust suppressant based on microalgae oil extraction. Fuel. 2023, vol. 338, pp. 1—10. DOI: 10.1016/j. fuel.2022.127273.

26. Romanchenko S. B., Naganovskiy Y. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Journal of Mining Institute. 2021, vol. 252, pp. 927—936. [In Russ]. DOI: 10.31897/PMI.2021.6.14.

27. Balovtsev S. V., Skopintseva O. V., Kolikov K. S. Aerological risk management in preparation mining of coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 107—116. [In Russ]. DOI: 10.21177/1998-4502-2022-14-1-107-116.

28. Gendler S. G., Borisovskiy I. A. Estimated impact of temperature conditions on deep pits natural ventilation in the arctic. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 218—227. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-218-227.

29. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning. Journal of Mining Institute. 2021, vol. 250, pp. 553—561. [In Russ]. DOI: 10.31897/PMI.2021.4.8.

30. Sidorenko A. A., Dmitriev P. N., Sirenko Y. G. Predicting methane emissions from multiple gas-bearing coal seams to longwall goafs at russian mines. ARPN Journal of Engineering and Applied Sciences. 2021, vol. 16, no. 8, pp. 851—857.

31. Kazanin O. I., Sidorenko A. A., Vinogradov E. A. Choosing and substantiating the methods of managing gas emission in the conditions of the Kotinskaya Mine of JSC SUEK—Kuzbass. ARPN Journal of Engineering and Applied Sciences. 2017, vol. 12, no. 6, pp. 1822—1827.

32. Sidorenko S., Trushnikov V., Sidorenko A. Methane emission estimation tools as a basis for sustainable underground mining of gas-bearing coal seams. Sustainability (Switzerland). 2024, vol. 16, no. 8, article 3457. DOI: 10.3390/su16083457.

33. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1917—1929.

34. Baiwei Lei, Chao Li, Zheng Wang, Bing Wu Study on the effect of venting conditions on methane-air explosion characteristics in full-scale mine tunnel. Thermal Science and Engineering Progress. 2024, vol. 47, article 102349. DOI: 10.1016/j.tsep.2023.102349.

35. Karacan C. O. Predicting methane emissions and developing reduction strategies for a Central Appalachian Basin, USA, longwall mine through analysis and modeling of geology and degasification system performance. International Journal of Coal Geology. 2023, vol. 270, article 104234. DOI: 10.1016/j.coal.2023.104234.

36. Guoliang Zhang, Jin Guo, Jiaqing Zhang, Yi Guo, Changhai Li, Su Zhang Experimental study on flame propagation through stratified crude oil vapor in a horizontal duct. Fuel. 2021, vol. 294, article 120531. DOI: 10.1016/j.fuel.2021.120531.

37. Gridina E. B., Rudakov M. L., Rumiantseva A. M. Evaluation of stability of sides of quarries and dumps on the basis of a risk-oriented approach. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020, no. 4, pp. 47—52. DOI: 10.33271/nvngu/20204/047.

38. Gridina E. B., Kovshov S. V., Borovikov D. O. Hazard mapping as a fundamental element of OSH management systems currently used in the mining sector. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, no. 1, pp. 107—115. DOI: 10.33271/nvngu/2022-1/107.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.