Development and industrial adaptation of a resource-saving technology for magnetite–hematite concentrate production from manmade iron-ore feedstock

The studies aimed at development of a resource-saving processing technology for Zaimandrovsky ore concentration tailings put into storage. Based on the revealed patterns of material composition of tailings samples, it is expedient to perform preliminary classification of the tailings by the size grade of 0.63 mm, which ensures the increase in the mass fraction of iron and the reduction in the aggregation of valuable minerals in the original feed of separation at minor ore loss with screen overflow. Layouts of the gravity preparation equipment for the proposed process flowsheet are selected and validated. The flowsheet includes three stages of spiral separation which ensures stable production of iron ore concentrate from both commercial-grade and low-grade manmade initial raw material. The prospects of weak-field magnetic separation for the magnetite concentrate production are assessed. As a result of the accomplished research, two versions of a resource-saving technology for processing of tailings are proposed: gravity separation and magnetic gravity separation. These technologies enabled production of iron ore concentrates with the iron contents of 65% and 62% at the recovery of 59% and 62%, respectively.

Keywords: manmade tailings, tailings put in storage, ferruginous quartzite, hematite, magnetite, gravity separation, spiral separation, magnetic separation, screening, iron ore concentrate.
For citation:

Fomin A. V., Khokhulya M. S. Development and industrial adaptation of a resource-saving technology for magnetite–hematite concentrate production from manmade ironore feedstock. MIAB. Mining Inf. Anal. Bull. 2024;(1):80-93. [In Russ]. DOI: 10.25018/0236_ 1493_2024_1_0_80.

Acknowledgements:
Issue number: 1
Year: 2024
Page number: 80-93
ISBN: 0236-1493
UDK: 622.341.1; 622.778; 622.771.6
DOI: 10.25018/0236_1493_2024_1_0_80
Article receipt date: 17.03.2023
Date of review receipt: 05.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

A.V. Fomin1, Cand. Sci. (Eng.), e-mail: fomin5-49@mail.ru, ORCID ID: 0000-0002-0366-7439,
M.S. Khokhulya1, Cand. Sci. (Eng.), e-mail: m.hohulya@ksc.ru, ORCID ID: 0000-0003-1409-8398,
1 Mining Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia.

 

For contacts:

A.V. Fomin, e-mail: fomin5-49@mail.ru.

Bibliography:

1. Deryagin A. A., Kotova V. M., Nikolsky A. L. Evaluation of the prospects for involving man-made deposits into processing. Mine Surveying and Subsurface Use. 2001, no. 1 (1), pp. 15—18. [In Russ].

2. Argimbaev K. R., Kornev A. V., Kholodnyakov G. A. Substantiation of the possibility of involving iron-containing tailings in processing with subsequent agglomeration of the obtained concentrates. Journal of Mining Institute. 2013, vol. 206, pp. 120—124. [In Russ].

3. Tselyuk D. I., Zhukova V. E., Ozhogina E. G., Yakushina O. A., Tselyuk I. N. Mineralogical and technological features of tailings of wet magnetic separation of iron ores and prospects for recovery of iron from them. Journal of Siberian Federal University. Engineering & Technologies. 2013, vol. 6, no. 4, pp. 412—424. [In Russ].

4. Kretov S. I., Gubin S. L., Ignatova T. V., Sentemova V. A., Beznogova Yu. S. Testing of the technology for obtaining hematite concentrates from the tailings of the processing plant of OAO Mikhailovsky GOK. Obogashchenie Rud. 2007, no. 6, pp. 20—24. [In Russ].

5. Yushina T. I., Krylov I. O., Valavin V. S., Sysa P. A. Investigation of the possibility of production of iron-containing product for the ROMELT technology from processing wastes of the Kamysh-Burunsky GOK. Gornyi Zhurnal. 2017, no. 7, pp. 68—72. [In Russ]. DOI: 10.17580/ gzh.2017.06.10.

6. Dauce P. D., de Castro G. B., Lima M. M. F., Lima R. M. F. Characterisation and magnetic concentration of an iron ore tailings. Journal of Materials Research and Technology. 2019, vol. 8, no. 1, pp. 1052—1059. DOI: 10.1016/j.jmrt.2018.07.015.

7. Hanumantha Rao K., Narasimhan K. S. Selective flocculation applied to Barsuan iron ore tailings. International Journal of Mineral Processing. 1985, vol. 14, pp. 67—75. DOI: 10.1016/0301-7516(85)90015-8.

8. Wang Y., Ren J. The flotation of quartz from iron minerals with a combined quaternary ammonium salt. International Journal of Mineral Processing. 2005, vol. 77, pp. 116—122. DOI: 10.1016/j.minpro.2005.03.001.

9. Song S., Lu S., Lopez-Valdivieso A. Magnetic separation of hematite and limonite fines as hydrophobic flocs from iron ores. Minerals Engineering. 2002, vol. 15, pp. 415—422. DOI: 10.1016/S0892-6875(02)00054-7.

10. Li C., Suna H., Baic J., Li L. Innovative methodology for comprehensive utilization of iron ore tailings. Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Journal of Hazardous Materials. 2010, vol. 174, pp. 71—77. DOI: 10.1016/j.jhazmat.2009.09.018.

11. Güngör K., Atalay M. Ü., Sivrikaya O. Production of magnetite concentrate from iron ore tailings. Proceedings of the XIV Balkan Mineral Processing Congress. Tuzla, Bosnia and Herzegovina. 2011, vol. 1, pp. 331—337.

12. Fontes Wanna C., Franco de Carvalho, Jose M. Assessment of the use potential of iron ore tailings in the manufacture of ceramic tiles: From tailings-dams to «brown porcelain». Construction and Building Materials. 2019, vol. 206, pp. 111—121. DOI: 10.1016/j.conbuildmat.2019.02.052.

13. Tang C., Li K., Ni W. Recovering iron from iron ore tailings and preparing concrete composite admixtures. Minerals. 2019, vol. 9, no. 4, pp. 2—14. DOI: 10.3390/min9040232.

14. Li W., Lei G., Xu Y. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings. Journal of Cleaner Production. 2018, vol. 204, pp. 685—692. DOI: 10.1016/j.jclepro.2018.08.309.

15. Smirnov A. A., Baranovsky K. V., Rozhkov A. A., Solomein Yu. M. Mining of an iron ore deposit by technology with a combined stowage. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-1, pp. 62—76. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_62.

16. Galvão J. L. B., Andrade H. D., Brigolini G. J., Peixoto R. A. F., Mendes J. C. Reuse of iron ore tailings from tailings dams as pigment for sustainable paints. Journal of Cleaner Production. 2018, vol. 200, pp. 412—422. DOI: 10.1016/j.jclepro.2018.07.313.

17. Darezereshki E., Darban A. K., Abdollahy M. Synthesis of magnetite nanoparticles from iron ore tailings using a novel reduction-precipitation method. Journal of Alloys and Compounds. 2018, vol. 749, pp. 336—343. DOI: 10.1016/j.jallcom.2018.03.278.

18. Trushko V. L., Trushko O. V. Integrated development of iron ore deposits based on competitive underground geotechnologies. Journal of Mining Institute. 2021, vol. 250, pp. 569—577. [In Russ]. DOI: 10.31897/PMI.2021.4.10.

19. Khokhulya M. S., Fomin A. V., Alekseeva S. A., Karpov I. V. Resource-saving technology for hematite concentration from storage mill tailings at Olkon Mining and processing works. Gornyi Zhurnal. 2020, no. 9, pp. 85—90. [In Russ]. DOI: 10.17580/gzh.2020.09.12.

20. Khokhulya M., Fomin A., Alekseeva S. Recovery of magnetite-hematite concentrate from iron ore tailings. E3S Web of Conferences. 2021, vol. 247, article 01042. DOI: 10.1051/ e3sconf/202124701042.

21. Lotsmanov V. A., Dmitrienko A. N., Kiseleva T. M., Markov A. Yu. The experience of beneficiation of waste tailings of the processing plant of the Olenegorsky GOK. Russian Mining Industry. 2003, no. 3, pp. 42—45. [In Russ].

22. Opalev A. S. Improving quality of magnetite concentrates based on magnetic–gravity separation. Gornyi Zhurnal. 2020, no. 9, pp. 72—77. [In Russ]. DOI: 10.17580/gzh.2020.09.10.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.