Load-bearing capacity criterion for frozen wall based on temperature monitoring

The article analyzes the thermotechnical calculation results of artificial ground freezing in an abuilding shaft of a potash mine in the Republic of Belarus. The model of thermal processes in rocks during freezing was validated using the in-situ data of temperature monitoring in thermal control wells arranged close to the ring of freeze pipe. It is found that the parameter of thickness of frozen wall in its load-bearing capacity evaluation at different times is ambiguous. A reliable estimate of load-bearing capacity of frozen wall needs additional criteria to be included, for example, the average temperature of frozen wall. This study shows that the frozen wall thickness and average temperature vary greatly in transition from active to passive freezing, as well as in subsequent transition to thawing of rocks. The use of two time-variable criteria in the frozen wall analysis appears to be inconvenient, and, therefore, this study proposes a new criterion which consists in direct calculation of the ultimate bearing capacity of frozen wall based on the actual field of temperatures in frozen rocks and using empirical temperature dependences of strength and deformation properties of frozen rocks.

Keywords: artificial ground freezing, thermotechnical calculation, frozen wall, nonuniform distribution of properties, load-bearing capacity.
For citation:

Semin M. A., Golovaty I. I., Levin L. Yu., Bogomyagkov A. V. Load-bearing capacity criterion for frozen wall based on temperature monitoring. MIAB. Mining Inf. Anal. Bull. 2024;(11):111-125. [In Russ]. DOI: 10.25018/0236_1493_2024_11_0_111.

Acknowledgements:

The research was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of the project (grant number: 122030100425-6).

Issue number: 11
Year: 2024
Page number: 111-125
ISBN: 0236-1493
UDK: 622.253.3
DOI: 10.25018/0236_1493_2024_11_0_111
Article receipt date: 24.01.2024
Date of review receipt: 05.04.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

M.A. Semin1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: seminma@inbox.ru, ORCID ID: 0000-0001-5200-7931,
I.I. Golovaty, Director, OJSC «Belaruskali», Soligorsk, Belarus, e-mail: iwan15@yandex.by,
L.Yu. Levin1, Dr. Sci. (Eng.), Corresponding Member of Russian Academy of Sciences, Head of Department,  Deputy Director for Scientific Work, e-mail: aerolog_lev@mail.ru, ORCID ID: 0000-0003-0767-9207,
A.V. Bogomyagkov1, Junior Researcher, e-mail: bavaerolog@gmail.com,
1 Mining Institute of the Ural Branch of the Russian Academy of Sciences, Perm, Russia.

 

For contacts:

M.A. Semin, e-mail: seminma@inbox.ru.

Bibliography:

1. Fan W., Yang P. Ground temperature characteristics during artificial freezing around a subway cross passage. Transportation Geotechnics. 2019, vol. 20, article 100250. DOI: 10.1016/j.trgeo.2019. 100250.

2. Hentrich N., Franz J. About the application of conventional and advanced freeze circle design methods for the Ust-Jaiwa freeze shaft project. Vertical and Decline Shaft Sinking: Good Practices in Technique and Technology. International Mining Forum. Leiden, CRC Press/Balkema. 2015, pp. 89—104.

3. Amosov P. V., Lukichev S. V., Nagovitsyn O. V. Influence of rock mass porosity and coolant temperature on the rate of creation of a continuous ice-rock barrier. Herald of the Kola Science Center of RAS. 2016, no. 4 (27), pp. 43—50. [In Russ].

4. Wu T., Zhou X., Zhang L., Zhang X., He X., Xu Y. Theory and technology of real-time temperature field monitoring of vertical shaft frozen wall under high-velocity groundwater conditions. Cold Regions Science and Technology. 2021, vol. 189, article 103337. DOI: 10.1016/j.coldregions.2021. 103337.

5. Volokhov E. M., Mukminova D. Z. Deformations assessment during subway escalator tunnels construction by the method of artificial freezing of soil for the stage of ice wall formation. Journal of Mining Institute. 2021, vol. 252, pp. 826—839. [In Russ]. DOI: 10.31897/PMI.2021.6.5.

6. Pimentel E., Papakonstantinou S., Anagnostou G. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunneling. Tunnelling and Underground Space Technology. 2012, vol. 28, pp. 57—69. DOI: 10.1016/j.tust.2011.09.005.

7. Levin L. Y., Semin M. A., Zaitsev A. V. Solution of an inverse Stefan problem in analyzing the freezing of groundwater in a rock mass. Journal of Engineering Physics and Thermophysics. 2018, vol. 91, pp. 611—618. DOI: 10.1007/s10891-018-1782-3.

8. Semin M., Golovatyi I., Levin L., Pugin A. Enhancing efficiency in the control of artificial ground freezing for shaft construction. A case study of the Darasinsky potash mine. Cleaner Engineering and Technology. 2024, vol. 18, article 100710. DOI: 10.1016/j.clet.2023.100710.

9. Zhang B., Yang W., Wang B. Plastic design theory of frozen wall thickness in an ultradeep soil layer considering large deformation characteristics. Mathematical Problems in Engineering. 2018, vol. 2018, article 8513413. DOI: 10.1155/2018/8513413.

10. Semin M. A., Brovka G. P., Pugin A. V., Bublik S. A., Zhelnin M. S. Effects of temperature field nonuniformity on strength of frozen wall in mine shafts. MIAB. Mining Inf. Anal. Bull. 2021, no. 9, pp. 79—93. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_79.

11. Nikolaev P., Jivkov A. P., Margetts L., Sedighi M. Modelling artificial ground freezing subjected to high velocity seepage. International Journal of Heat and Mass Transfer. 2024, vol. 221, article 125084. DOI: 10.1016/j.ijheatmasstransfer.2023.125084.

12. Tounsi H., Rouabhi A., Tijani M., Guérin F. Thermo-hydro-mechanical modeling of artificial ground freezing: application in mining engineering. Rock Mechanics and Rock Engineering. 2019, vol. 52, no. 10, pp. 3889—3907.

13. Liu Y., Li K. Q., Li D. Q., Tang X. S., Gu S. X. Coupled thermal—hydraulic modeling of artificial ground freezing with uncertainties in pipe inclination and thermal conductivity. Acta Geotechnica. 2022, vol. 17, no. 1, pp. 257—274.

14. Yang Y., Lei D., Chen Y., Cai C., Hou S. Coupled thermal-hydro-mechanical model of deep artificial freezing clay. Cold Regions Science and Technology. 2022, vol. 198, article 103534.

15. Levin L., Semin M., Golovatyi I. Analysis of the structural integrity of a frozen wall during a mine shaft excavation using temperature monitoring data. Frattura ed Integrità Strutturale. 2023, vol. 17, no. 63, pp. 1—12.

16. Vyalov S. S., Zaretsky Y. K., Gorodetsky S. E. Stability of mine workings in frozen soils. Engineering Geology. 1979, vol. 13, no. 1-4, pp. 339—351.

17. He H., Dyck M. F., Horton R., Li M., Jin H., Si B. Distributed temperature sensing for soil physical measurements and its similarity to heat pulse method. Advances in Agronomy. 2018, vol. 148, pp. 173—230.

18. Stutsel B. M., Callow J. N., Flower K. C., Biddulph T. B., Issa N. A. Application of distributed temperature sensing using optical fibre to understand temperature dynamics in wheat (triticum aestivum) during frost. European Journal of Agronomy. 2020, vol. 115, article 126038.

19. Kong B., He S., Xia T., Ding Z. Research on microstructure of soft clay under various artificial ground freezing conditions based on NMR. Applied Sciences. 2021, vol. 11, no. 4, article 1810.

20. Hou S., Yang Y., Cai C., Chen Y., Li F., Lei D. Modeling heat and mass transfer during artificial ground freezing considering the influence of water seepage. International Journal of Heat and Mass Transfer. 2022, vol. 194, article 123053.

21. Ol'khovikov Yu. P. Krep' kapital'nykh vyrabotok kaliynykh i solyanykh rudnikov [Support of capital workings of potassium and salt mines], Moscow, Nedra, 1984, 238 p.

22. Liu J., Yang P., Yang Z. J. Electrical properties of frozen saline clay and their relationship with unfrozen water content. Cold Regions Science and Technology. 2020, vol. 178, article 103127.

23. Bogomyagkov A. V., Pugin A. V. Improvement of the mathematical model of heat and mass transfer in frozen soils implemented in the FrozenWall program. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2023, vol. 334, no. 2, pp. 164—174. [In Russ].

24. Trupak N. G. Zamorazhivanie gornykh porod pri prokhodke stvolov [Freezing rocks during shaft sinking], Moscow, Ugletekhizdat, 1954. 896 с.

25. Han T., Xue Y., Luo T., Zhang T. Prediction and analysis of formation and development characteristics of frozen soil wall: A case study on the chengjiao east ventilation shaft repair. Applied Sciences. 2023, vol. 13, no. 5, article 3209. DOI: 10.3390/app13053209.

26. Ma B., Teng J., Li H., Zhang S., Cai G., Sheng D. A new strength criterion for frozen soil considering pore ice content. International Journal of Geomechanics. 2022, vol. 22, no. 7, article 04022107.

27. Wang R., Yang C., Ni L., Yao Y. Experimental study on heat transfer of soil with different moisture contents and seepage for ground source heat pump. Indoor and Built Environment. 2020, vol. 29, no. 9, pp. 1238—1248.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.