Developing prediction models for the cross-sectional areas of tunnels during drilling and blasting

One of the major criteria of drilling and blasting quality during tunneling is the crosssectional area of a tunnel after blasting. The post-blasting cross-sectional area of a tunnel governs also the scope of work during tunnel driving, such as soil/rock removal and haulage, and tunnel lining. This article proposes two methods to predict a cross-sectional area of a tunnel after blasting: the first model uses the artificial intelligences and the adaptive network-based fuzzy inference system (ANFIS); the second model uses the multiple linear regression analysis (MLRA). For the predictive modeling of the post-blasting cross-sectional area of a tunnel, we performed a broad comparison of the numerical results obtained using the two methods (efficiency of a prediction model was estimated by the values of the root-mean square error RMSE and coefficient of determination R2). The values of RMSE and R2 in the MLRA model are 0.2135 and 0.9362, respectively, for the learning datasets, and are 0.1827 and 0.9605, respectively, for the test datasets. In the ANFIS model, RMSE and R2 are 0.099 and 0.9758 for the learning datasets, and are 0.1211 and 0.9704 for the test datasets. On this basis, the conclusion is drawn that the method of the artificial intelligence with the ANFIS model can be used for predicting a cross-sectional area of a tunnel after blasting at a sufficiently high accuracy.

Keywords: drill and blast tunneling, cross-sectional area of tunnel, Adaptive Network-Based Fuzzy Inference System (ANFIS), artificial intelligence method, Multiple Linear Regression Analysis (MLRA), Root-Mean Square Error (RMSE), coefficient of determination R2.
For citation:

Bui Manh Tung, Nguyen Chi Thanh, Gospodarikov A. P., Zatsepin M. A. Developing prediction models for the cross-sectional areas of tunnels during drilling and blasting. MIAB. Mining Inf. Anal. Bull. 2024;(6):31-49. [In Russ]. DOI: 10.25018/0236_1493_2024_6_0_31.


The study was supported by the Ministry of Education and Training of Vietnam and by the Hanoi University of Mining and Geology.

Issue number: 6
Year: 2024
Page number: 31-49
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236_1493_2024_6_0_31
Article receipt date: 04.08.2022
Date of review receipt: 13.03.2024
Date of the editorial board′s decision on the article′s publishing: 10.05.2024
About authors:

Bui Manh Tung1, PhD (Eng.), e-mail:, ORCID ID: 0000-0003-3559-0656,
Nguyen Chi Thanh1, PhD (Eng.), e-mail:, ORCID ID: 0000-0003-4455-0234,
A.P. Gospodarikov2, Dr. Sci. (Eng.), Head of Chair, e-mail:, ORCID ID: 0000-0003-1018-6841,
M.A. Zatsepin2, Cand. Sc. (Phys.-Math.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-6304-8349,
1 Hanoi University of Mining and Geology, Hanoi, Vietnam,
2 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

M.A. Zatsepin, e-mail:


1. Kholodilov A. N., Vinogradov Yu. I. Method for forecasting of surface facilities vibrations reasoned by impulse action of air shock waves. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 55—63. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-55-63.

2. Sabyanin G. V., Shilenko S. Yu., Trofimov A. V., Kirkin A. P. Explosive unloading of a rock mass at deep mines of the Polar Division of PJSC MMC Norilsk Nickel. Gornyi Zhurnal. 2021, no. 2, pp. 32—36. [In Russ]. DOI: 10.17580/gzh.2021.02.04.

3. Iphar M. ANN and ANFIS performance prediction models for hydraulic impact hammers. Tunnelling and Underground Space Technology. 2012, vol. 27, no. 1, pp. 23—29. DOI: 10.1016/j. tust.2011.06.004.

4. Jang H., Topal E. Optimizing over break prediction based on geological parameters comparing multiple regression analysis and artificial neural network. Tunnelling and Underground Space Technology. 2013, vol. 38, pp. 161—169. DOI: 10.1016/j.tust.2013.06.003.

5. Hasanipanah M., Amine B. H., Arab H., Zamzam M. S. Feasibility of PSO—ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications. 2016, vol. 30. DOI: 10.1007/s00521-016-2746-1.

6. Mottahedi A., Sereshki F., Ataei M. Development of overbreak prediction models in drill and blast tunneling using soft computing methods. Engineering with Computers. 2018, vol. 34, no. 1, pp. 45—58. DOI: 10.1007/s00366-017-0520-3.

7. Trushko V. L., Baeva E. K. Substantiation of rational parameters of mine support system for underground roadways in difficult geological conditions. MIAB. Mining Inf. Anal. Bull. 2023, no. 12, pp. 55—69. [In Russ]. DOI: 10.25018/0236-1493-2023-12-0-55.

8. Korchak P. A., Karasev M. A. Geomechanical prediction of the brittle fracture zones in rocks in the vicinity of the excavation junction of Ltd «Apatit» mines. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 67—80. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-67-80.

9. Ibarra J. A., Maerz N. H., Franklin J. A. Overbreak and underbreak in underground openings part 2: causes and implications. Geotechnical and Geological Engineering. 1996, vol. 14, pp. 325—340.

10. Mysin A. V., Kovalevsky V. N., Dolzhikov V. V. Experimental studies on the performance parameters of elongated shaped charges of different configurations. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 125—140. DOI: 10.25018/0236-1493-2022-10-0-125.

11. Kosko B. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice Hall, New Delhi, 1994, 449 p.

12. Mandal S. K., Singh M. M., Dasgupta S. Theoretical concept to understand plan and design smooth blasting pattern. Geotechnical and Geological Engineering. 2008, vol. 26, no. 4, pp. 399— 416.

13. Monjezi M., Mohamadi H., Barati B., Khandelwal M. Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects. Arabian Journal of Geosciences. 2012, vol. 7, pp. 505—511.

14. Nabatov V. V., Voznesenskii A. S. Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif. Journal of Mining Institute. 2023, vol. 264, pp. 926—936. [In Russ].

15. Mohammad E., Morteza O., Rashidinejad F., Aghajani B. A., Mohammad T. Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Engineering with Computers. 2014, vol. 30, pp. 549—558.

16. Chi T. N., Do N. A., Pham V. V., Gospodarikov A. Prediction of blast-induced the area of the tunnel face in underground excavations using fuzzy set theory ANFIS and artificial neural network ANN. International Journal of GEOMATE. 2022, vol. 23, no. 95, pp. 136—143.

17. Shabarov A. N., Kuranov A. D. Basic development trends in mining sector in complicating geotechnical conditions. Gornyi Zhurnal. 2023, no. 5, pp. 5—10. [In Russ]. DOI: 10.17580/gzh.2023.05.01.

18. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2023, vol. 259, pp. 95—111. [In Russ]. DOI: 10.31897/PMI.2022.100.

19. Shadrin M. A., Sidorov D. V., Kornaushenko A. P., Minzaripov R. G. Substantiation of safe parameters for yielding rib pillars in mining technology of ore breaking with induced roof subsidence in complex rockburst-hazardous conditions in Severouralsk bauxite mines. Gornyi Zhurnal. 2023, no. 1, pp. 85—88. [In Russ]. DOI: 10.17580/gzh.2023.01.14.

20. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023, vol. 262, pp. 619—627. [In Russ].

21. Nguyen Tai Tien, Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behavior. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2021, vol. 74, no. 4, pp. 355—371. DOI: 10.1680/jgeen.20.00057.

22. Kim Y., Moon H. K. Application of the guideline for overbreak control in granitic rock masses in Korean tunnels. Tunnelling and Underground Space Technology. 2013, vol. 35, pp. 67—77. DOI: 10.1016/j.tust.2012.11.008.

23. Ghasemi E., Kalhori H., Bagherpour R. A new hybrid ANFIS—PSO model for prediction of peak particle velocity due to bench blasting. Engineering with Computers. 2016, vol. 32, no. 4, pp. 607—614.

24. Shoorehdeli M. A., Teshnehlab M., Sedigh A. K. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches. Neural Computing and Applications. 2009, vol. 18, pp. 157—174.

25. Fisne A., Kuzu C., Hüdaverdi T. Prediction of environmental impacts of quarry blasting operation using fuzzy logic. Environmental Monitoring and Assessment. 2011, vol. 174, pp. 461—470.

26. Anatolyev S. Durbin-Watson statistic and random individual effects. Econometric Theory. 2003, vol. 19, no. 5, pp. 882—883.

27. Jang R. J. S. Anfis: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems Man and Cybernetics. 1993, vol. 23, no. 3, pp. 665—685.

28. Jang R. J. S., Sun C. T., Mizutani E. Neuro-fuzzy and soft computing. Prentice-Hall, Upper Saddle River, 1997, 614 p.

29. Mohamed M. T. Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. International Journal of Rock Mechanics and Mining Sciences. 2011, vol. 48, no. 5, pp 845—851.

30. Ozer U., Kahriman A., Aksoy M., Adiguzel D., Karadogan A. The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts. Environmental Geology. 2008, vol. 54, pp. 737—743.

31. Kashnikov A. V., Kruglov Y. V. Strategy of mine ventilation control in optimal mode using fuzzy logic controllers. Journal of Mining Institute. 2023, vol. 262, pp. 594—605. [In Russ]. DOI: 10.31897/ PMI.2022.75.

32. Sedykh I., Istomin V. Management of the strip cooling process using neural networks based on clustered dat. 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency. 2020, pp. 375—377.

33. Looney C. G. Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering. 1996, vol. 8, no. 2, pp. 211—226.

34. Swingler K. Applying neural networks: a practical guide. Academic Press. New York, 1996, 303 p.

35. Zorlu K., Gokceoglu C., Ocakoglu F., Nefeslioglu H. A., Acikalin S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Engineering Geology. 2008, vol. 96, pp. 141—158. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.