Development of an approach to assess the effectiveness of shock-proof measures

In the literature on the use of shockproof measures at mining enterprises in the course of work, technical solutions, necessary equipment, materials used, and the procedure for implementing measures are described in detail, but the issue of effectiveness and efficiency assessment is practically not covered. Most often, efficiency is assessed as a result of stress reduction, or in rare cases, a qualitative cost comparison (in monetary terms) with other similar measures, which, as we believe, does not fully correspond to the concept. Perhaps the lack of methods is caused by the need to apply measures regardless of their degree of effectiveness, but it is difficult to dispute the fact that efficiency is an indicator of the development of the system, and increasing efficiency is the basis for the success of the system in the future. A well-thought-out approach, taking into account the specifics of the event, indirectly, but should stimulate technical improvement, improvement and development of new measures for use in various mining and geological conditions, which will eventually reduce the impact of geodynamic manifestations on mining enterprises and increase the safety of mining operations. The article proposes an approach to assessing the effectiveness of shock-proof measures that fully corresponds to the modern concept of efficiency, including both qualitative and quantitative indicators and taking into account the connection with the forecast of the occurrence of a geodynamic phenomenon.

Keywords: big depth, geodynamic phenomena, mining pressure, mining impacts, shockproof measures, prediction of seismic events, local prediction, regional prediction, economic efficiency.
For citation:

Noskov V. A., Andreev A. A., Shabarov A. N. Development of an approach to assess the effectiveness of shock-proof measures. MIAB. Mining Inf. Anal. Bull. 2024;(11−1):81—96. [In Russ]. DOI: 10.25018/0236_1493_2024_111_0_81.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 81-96
ISBN: 0236-1493
UDK: 622.013.3:622.831.24
DOI: 10.25018/0236_1493_2024_111_0_81
Article receipt date: 17.06.2024
Date of review receipt: 16.07.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

Noskov V. A.1, Cand. Sci. (Economic), Deputy Director for Science and Innovation of the Scientific Center for Geomechanics and Mining Issues, https://orcid. org/0009−0006−6971−541X, e-mail: noskov_va@pers.spmi.ru;
Andreev A. A.1, Project Manager of the Management Staff of the Scientific Center for Geomechanics and Mining Issues;
Shabarov A. N.1, Dr. Sci. (Eng.), Director of the Scientific Center for Geomechanics and Mining Issues, http://orcid.org/ 0000−0001−7925−3163;
1 St. Petersburg Mining University, 199106, St. Petersburg, Vasilyevsky Island, 21 line, 2, Russia.

 

For contacts:

Noskov V. A., e-mail: noskov_va@pers.spmi.ru.

Bibliography:

1. Qiming Zhang, Enyuan Wang, Xiaojun Feng, Yue Niu, Muhammad Ali, Song Lin, Hao Wang. Rockburst risk analysis during high-hard roof breaking in deep mines. Natural Resources Research. 2020, vol. 29, no. 6, pp. 4085–4101. DOI: 10.1007/ s11053−020−09664-w.

2. Li C. C., Mikula P., Simser B., Hebblewhite B., Joughin W. C. Discussions on rockburst and dynamic ground support in deep mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11(5), pp. 1110–1118. DOI: 10.1016/j.jrmge.2019.06.001.

3. Kozyrev A. A., Panin V. I., Semenova I. E., Zhuravleva O. G. Geodynamic Safety of Mining Operations under Rockburst-Hazardous Conditions in the Khibiny Apatite Deposits. J Min Sci. 2018, vol. 54, pp. 734–743. https://doi.org/10.1134/S1062739118054832.

4. Ping Cheng, Yanbo Li, Caiwu Lu, Song Jiang, Hanhua Xu. Study on blasting effect optimization to promote sustainable mining under frozen conditions. Sustainability. 2022, vol. 14, iss. 24, 16479. DOI: 10.3390/su142416479.

5. Zhimin Xiao, Shitan Gu, Yunzhao Zhang, He Wang. A coal seam-roof-floor coupling destressing control method of fault coal bursts induced by deep coal seam mining. Energy Sci Eng. 2022, vol. 10, pp. 2170–2190. DOI: 10.1002/ese3.1124.

6. Rasskazov I. Y. Control and management of mining pressure in the mines of the Far Eastern region. Moscow, Publishing house “Gornaya kniga”, 2008, 329 p. [In Russ].

7. Nordström E., Dineva S., Nordlund E. Back analysis of short-term seismic hazardindcators of larger seismic events in deep underground mines (LKAB, KiirunavaaraMine, Sweden). Pure and Applied Geophysics. 2020, vol. 177, pp. 763–785. DOI: 10.1007/s00024−019−02352−8.

8. Batugin A. S. Geodynamic effects of the critically stressed state of the Earth’s crust. Russian mining industry. Gornaya promyshlennost. 2023, no. S1, pp. 14–21. [In Russ]. DOI: 10.30686/1609−9192−2023-S1−14−21.

9. Gospodarikov A. P., Kirkin A. P., Kovalevskiy V. N. On some local rock burst prevention methods. Bulletin of TulSU. Earth Sciences. 2021, issue 2, pp. 77–93. [In Russ].

10. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023, vol. 262, pp. 619–627. [In Russ].

11. Zhimin Xiao, Shitan Gu, Yunzhao Zhang, He Wang. A coal seam-roof-floor coupling destressing control method of fault coal bursts induced by deep coal seam mining. Energy Sci Eng. 2022, vol. 10, pp. 2170–2190. DOI: 10.1002/ese3.1124.

12. Sainoki A., Zaka M., Mitri H. Study on the efficiency of destressblasting in deep mine drift development. Canadian Geotechnical Journal. 2017, vol. 54, no. 4, pp. 518–528. DOI: 10.1139/cgj-2016−0260.

13. Lovchikov A. V., Zemtzovsky A. V. Rockburst prevention in deep ore pillars by forming relieve slots (for the Lovozero raremetal deposit). Bulletin of the Moscow State Technical University. 2019, no. 1, pp. 158–166. [In Russ]. DOI: 10.21443/1560−9278−2019−22−1-158−166.

14. Simpler B. P. Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, pp. 1036–1043. DOI: 10.1016/j. jrmge.2019.07.005.

15. Orekhova E.A., Korovnikova G. V., Korovnikova I. V. Improving the Methodology for Assessing the Effectiveness of Economic Entities in Modern Conditions. Vestnik Kemerovskogo gosudarstvennogo universiteta. Seriia: Politicheskie, sotsiologicheskie i ekonomicheskie nauki. 2021, vol. 6(4), pp. 560–567. [In Russ]. htps://doi.org/10.21603/2500−3372−2021−6-4−560−567.

16. Shtele E. A., Vecherkovskaya O. B. On the concept of efficiency. Economic Analysis: Theory and Practice. 2017, vol. 16, iss. 5, pp. 935–947. [In Russ]. doi.org/10.24891/ea.16.5.935.

17. Gospodarikov A. P., Revin I. E., Morozov K. V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit. Journal of Mining Institute. 2023, vol. 262, pp. 571–580. [In Russ]. DOI: 10.31897/PMI.2023.9.

18. Marysyuk V. P., Darbinyan T. P., Andreev A. A., Noskov V. A. Efficiency of modification of the copper–nickel sulfide ore mining system in the Oktyabrsky mine. Mining Journal. 2019, no. 11, pp. 19–23. [In Russ]. DOI: 10.17580/gzh.2019.11.02.

19. Vanneschi C., Mastrorocco G., Salvini R. Assessment of a Rock Pillar Failure by Using Change Detection Analysis and FEM Modelling. International Journal of GeoInformation. 2021, vol. 10, iss. 11, 774. DOI: 10.3390/ijgi10110774.

20. Rasskazov M., Tereshkin A., Tsoi D., Konstantinov A., Miroshnikov V., Bagautdinov I., Kozhogulov K. Research of the formation of zones of stress concentration and dynamic manifestations based on seismoacoustic monitoring data in the fields of the Kola Peninsula. E3S Web Conf. 2020, vol. 192, 01009. DOI: 10.1051/e3sconf/202019201009.

21. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Mining Journal. 2020, no. 1. [In Russ]. DOI: 10.17580/ gzh.2020.01.05.

22. Shuren W., Chunyang L., Wenfa Y., Zhengshen Z., Wenxue C. Multiple indicators prediction method of rock burst based on microseismic monitoring technology. Arabian Journal of Geosciences. 2017, vol. 10(6), pp. 132–140. DOI: 10.1007/s12517−017−2946−8.

23. Karasev M. A., Sotnikov R. O. Prediction of the stress state of the shotcreting support under repeated seismic load. Journal of Mining Institute. 2021, vol. 251, pp. 626–638. [In Russ]. DOI: 10.31897/PMI.2021.5.2.

24. Kutepov Yu. Yu., Karasev M. A. Analysis and prediction of phosphogypsum compaction in dumps for dump capacity substantiation. Gornyi zhurnal. 2023, no. 5, pp. 61–67. [In Russ]. DOI: 10.17580/gzh.2023.05.09.

25. Jin-Shuai Zhao, Bing-Rui Chen, Quan Jiang, Jian-Fei Lu, Xian-Jie Hao et al. Microseismic monitoring of rock mass fracture response to blasting excavation of large underground caverns under high geostress. Rock Mechanics and Rock Engineering. 2022, vol. 55, iss. 2, pp. 733–750. DOI: 10.1007/s00603−021−02709−3.

26. Ilyinov M. D., Petrov D. N., Karmanskiy D. A., Selikhov A. A. Physical simulation aspects of structural changes in rock samples under thermobaric conditions at great depths. Mining Science and Technology (Russia). 2023, vol. 8(4), pp. 290–302. https://doi.org/10.1 7073/2500−0632−2023−09−150.

27. Shabarov A. N., Kuranov A. D., Kiselev V. A. Assessing the zones of tectonic fault influence on dynamic rock pressure manifestation at khibiny deposits of apatite-nepheline ores. Eurasian Mining. 2021, no. 2 (36), pp. 3–7. https://doi.org/10.17580/em.2021.02.01.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.