Mineral mapping system development: Improved accuracy of actual sizing of mineral spots on core surface

The article analyzes minimization of influences of factors that impair evaluation accuracy of mineral location on core sample surface in video camera recording. For reaching minimal disagreement between the actual area of a mineral spot on the core sample surface and the same spot area in the video camera image, a program module is designed to implement calibration. Calibration is carried out using a special calibration object placed in the video camera view, and the correction factors are determined for each area in the user-created Map and Images. The data of the program testing on a luminescence simulator prove the high measurement accuracy of the area of a mineral spot in any field of a recorded image. The deviation of the luminescence area of a light-emitting diode arranged in different areas of the Map of Image from the reference value (luminescence area of LED placed at the intersection of principal diagonals of the image) is never higher than 0.5%.

Keywords: core material, image processing, distortion, correction factors, mineral spot area.
For citation:

Voronin R. P., Shibaeva D. N., Bulatov V. V., Asanovich D. A. Mineral mapping system development: Improved accuracy of actual sizing of mineral spots on core surface. MIAB. Mining Inf. Anal. Bull. 2024;(10):92-107. [In Russ]. DOI: 10.25018/0236_1493_2024_10_0_92.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 22-27-20153.

Issue number: 10
Year: 2024
Page number: 92-107
ISBN: 0236-1493
UDK: 622.02
DOI: 10.25018/0236_1493_2024_10_0_92
Article receipt date: 17.07.2023
Date of review receipt: 21.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.09.2024
About authors:

R.P. Voronin1,2, Student; Programmer, e-mail: rom.voron@bk.ru, ORCID ID: 0000-0002-3974-0140,
D.N. Shibaeva1,2, Cand. Sci. (Eng.), Head of Laboratory; Leading Researcher, Head of Laboratory, e-mail: shibaeva_goi@mail.ru, ORCID ID: 0000-0002-3974-0140,
V.V. Bulatov2, Leading Engineer, e-mail: podrivnik@inbox.ru, ORCID ID: 0000-0003-0818-883Х,
D.A.Asanovich2, Leading Engineer, e-mail: asanovichdnja1@mail.ru, ORCID ID: 0000-0001-8480-6009,
1 Branch of the Murmansk Arctic University in Apatity, 184209, Apatity, Russia,
2 Mining Institute — Subdivision of the Federal Research Centre «Kola Science Centre of the Russia Academy of Sceince», 184209, Apatity, Russia.

 

For contacts:

D.N. Shibaeva, e-mail: shibaeva_goi@mail.ru.

Bibliography:

1. Shibaeva D. N., Kompanchenko A. A., Bulatov V. V., Asanovich D. A. Express assessment of apatite content in apatite—nepheline ores of ultrabasic alkaline complexes based on its luminescent properties (the first study stage). Minerals. 2023, vol. 13, no. 1, article 37. DOI: 10.3390/min13010037.

2. Shibaeva D. N., Voronin R. P., Kompanchenko A. A., Volkov D. O., Asanovich D. A. Bulatov V. V. Hardware and software solutions for the generation of a database of HSV-color characteristics for the main ores and rocks of the Khibiny Massif. Minerals. 2024, vol. 14, no. 2, article 186. DOI: 10.3390/min14020186.

3. Baraboshkin E. E., Demidov A. E., Orlov D. M., Koroteev D. A. Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences. 2022, vol. 162, article 105099. DOI: 10.1016/j.cageo.2022.105099.

4. Boguslavskiy M. A., Rassulov V. A., Yurin D. V. Possibility of image analysis as an objective assistant to human eye in description of ore sections. Bulletin of Moscow Society of Naturalists. Geological series. 2022, vol. 97, no. 4, pp. 3—11. [In Russ].

5. Pavlenko N. A. Issledovanie i razrabotka optiko-elektronnoy sistemy dlya separatsii mineral'nogo syr'ya po tsvetu [Research and development of optoelectronic system for separation of mineral raw materials by color], Candidate’s thesis, Saint-Petersburg, 2016, 17 p.

6. Yakimov N. V. Using open CV methods for cell segmentation of lung material. Innovations. The science. Education. 2021, no. 35, pp. 765—769. [In Russ].

7. Starovoytov V. V., Golub Yu. I. Tsifrovye izobrazheniya: ot polucheniya do obrabotki [Digital images: from acquisition to processing], Minsk, OIPI NAN Belarusi, 2014, 202 p.

8. Tudić V., Kralj D., Hoster J., Tropčić T. Design and implementation of a ball-plate control system and python script for educational purposes in STEM technologies. Sensors. 2022, vol. 22, no. 5, article 1875. DOI: 10.3390/s22051875.

9. Sorokin M. I. Methods for pattern recognition in images. Alley of Science. 2017, vol. 2, pp. 895— 906. [In Russ].

10. Ershov E. I., Korchagin S. A., Bezmaternykh P. V. A generalization of Otsu method for linear separation of two unbalanced classes in document image binarization. Computer Optics. 2021, vol. 45, no. 1, pp. 66—75. DOI: 10.18287/2412-6179-CO-752.

11. Wan Azani Mustafa, Mohamed Mydin M. Abdul Kader Binarization of document images: A comprehensive review. Journal of Physics Conference Series. 2018, vol. 1019, no. 1, article 012023. DOI: 10.1088/1742-6596/1019/1/012023.

12. Xiqi Ma, Pengyu Zhang, Xiaofei Man, Leming Ou New belt ore image segmentation method based on the convolutional neural network and the image-processing technology. Minerals. 2020, no. 10 , no. 12, article 1110. DOI: 10.3390/min10121110.

13. Jorge Calvo-Zaragoza, Antonio-Javier Galleg A selectional auto-encoder approach for document image binarization. Pattern Recognition. 2019, vol. 86, pp. 37—47. DOI: 10.1016/j.patcog.2018.08.011.

14. Gorobets B. S., Portnov A. M. Deciphering the luminescence spectra of apatites from various deposits. Trudy mineralogicheskogo muzeya imeni A.E. Fersmana. 1971, no. 20, pp. 70—75. [In Russ].

15. Tereshchenko S. V. Nauchnye osnovy lyuminestsentnoy separatsii mineral'nogo syr'ya [Scientific bases of luminescent separation of mineral raw materials], Doctor’s thesis, Saint-Petersburg, 2005, 48 p.

16. Gorobets B. S., Rogozhin A. A. Spektry lyuminestsentsii mineralov. Spravochnik [Luminescence spectra of minerals. Directory], Moscow, VIMS, 2001, 316 p.

17. Volotov E. M., Nesterov S. V., Mitrofanov I. V., Akimenko T. A., Efimov A. N., et all. A method for eliminating image distortions introduced due to the distortion of a video camera lens. News of the Tula state university. Technical sciences. 2018, no. 12, pp. 283—291. [In Russ].

18. Xi Chu, Zhixiang Zhou, Guojun Deng, Xin Duan, Xin Jiang An overall deformation monitoring method of structure based on tracking deformation contour. Applied Sciences. 2019, vol. 9, no. 21, article 4532. DOI: 10.3390/app9214532.

19. Glagolev V. M. Description and software correction of lens distortion. News of the Tula state university. Technical sciences. 2017, no. 9-2, pp. 188—194. [In Russ].

20. Maksimov V. A., Kholopov I. S. Projective distortion correction algorithm at low altitude photo/ video shooting on the data from inclinometer and range meter. Vestnik of Ryazan state radioengineering university. 2016, no. 58, pp. 109—116. [In Russ]. DOI: 10.21667/1995-4565-2016-58-4-109-116.

21. Kunina I. A., Gladilin S. A., Nikolaev D. P. Blind radial distortion compensation in a single image using fast Hough transform. Computer optics. 2016, vol. 40, no. 3, pp. 395—403. [In Russ].

22. Hsien Ming Easlon, Arnold J. Bloom easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences. 2014, vol. 2, no. 7, article 1400033. DOI: 10.3732/apps.1400033.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.