Response of seam–borehole and seam–stope systems to industrial blasts

Solid mineral mining involves excessive drainage–dewatering of underground openings and the related induced formation of the disturbed ground water dynamics, which shows up as growing cones of depression and domes of flowing under tailings ponds, for example. Disturbance of hydrodynamic situation can bring adverse consequences in the form of instability in some rock mass areas adjoining tectonically weak zones and lithologic and stratigraphic contacts. This defines essentiality and relevance of monitoring of water inflows, ground water table and microseismicity background. The aim of this study is to compare responses of the seam–borehole and seam–stope systems to an industrial blast. The study uses the processing results of seismic and hydrogeological data obtained from continuous monitoring at two stationary points on ground surface within a mine field and at an observation point in a mine. During field operations in the Korobkovo mine field, KMAruda, in July 2023, the integrated synchronous hydrogeological and seismic observations over the response of the seam–borehole and seam–stope systems to industrial blasts were performed.

Keywords: high-precision hydrogeological monitoring, crystalline ore body, aquifer, stope, industrial blast, reduced distance, peak particle velocity, hydrogeological response.
For citation:

Ivanov A. G., Karavaev A. V., Fedorov A. Yu. Response of seam–borehole and seam–stope systems to industrial blasts. MIAB. Mining Inf. Anal. Bull. 2025;(4):135-151. [In Russ]. DOI: 10.25018/0236_1493_2025_4_0_135.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 23-27-00469, https://rscf.ru/project/23-27-00469.

Issue number: 4
Year: 2025
Page number: 135-151
ISBN: 0236-1493
UDK: 550.8.05
DOI: 10.25018/0236_1493_2025_4_0_135
Article receipt date: 27.06.2024
Date of review receipt: 30.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2025
About authors:

A.G. Ivanov1, Graduate Student, Junior Researcher, e-mail: ivanov.ag@idg.ras.ru, ORCID ID: 0000-0002-8051-4735,
A.V. Karavaev1, Graduate Student, e-mail: karavaev.av@idg.ras.ru,
A.Yu. Fedorov1, Graduate Student, e-mail: fedorov.ayu@idg.ras.ru,
1 Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences, 119334, Moscow, Russia.

 

For contacts:

A.G. Ivanov, e-mail: ivanov.ag@idg.ras.ru.

Bibliography:

1. Zhitinskaya O. M. Vliyanie komponentov inzhenerno-geologicheskikh usloviy na ustoychivost' bortov zhelezorudnykh kar'erov pri dlitel'noy ikh razrabotke [The influence of the components of engineering-geological conditions on the stability of the sides of iron ore quarries during their long-term development], Candidate’s thesis, Мoscow, RGGRU, 2018, 26 p.

2. Kozyrev A. A., Onuprienko V. S., Zhukova S. A., Zhuravleva O. G. Induced seismicity of rock mass: development of instrumental and methodological support to control seismicity at the Khibiny apatite-nepheline deposits. Gornyi Zhurnal. 2020, no. 9, pp. 19—26. [In Russ]. DOI: 10.17580/ gzh.2020.09.02.

3. Petin A. N., Kramchaninov N. N., Pogorel'tsev I. A. Ukolov I. M. Assessment of anthropogenic impact on groundwater in the area of influence of Stary Oskol Gubkin industrial complex. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2013, vol. 15, no. 3(3), pp. 949—953. [In Russ].

4. Gorbunova E. M., Besedina A. N., Kabychenko N. V., Batukhtin I. V., Petukhova S. M. Precision hydrogeological monitoring in technogenically disturbed conditions: organization, execution, and processing of experimental data. Seismic Instruments. 2021, vol. 57, no. 2, pp. 62—80. [In Russ]. DOI: 10.21455/si2021.2-4.

5. Gorbunova E. M., Besedina A. N., Kabychenko N. V., Batukhtin I. V., Petukhova S. M. Response of water-saturated reservoirs to a dynamic impact based on the data of groundwater-level monitoring by precision measurements. Physics of the Earth. 2021, no. 5, pp. 74—90. [In Russ]. DOI: 10.31857/ S0002333721050070.

6. Batugin A. S. Geodynamic effects of the critically stressed state of the Earth’s crust. Russian Mining Industry Journal. 2023, no. S1, pp. 14—21. [In Russ]. DOI: 10.30686/1609-9192-2023-S1-14-21.

7. Bashkov V. I., Shtirts V. A., Eremenko A. A., Konurin A. I. Assessment of the geomechanical state of a rock mass during mass explosions at the rock burst hazardous ore deposit of Gornaya Shoria. Fundamentalnie i prikladnie voprosy gornykh nauk. 2015, vol. 2, no. 2, pp. 205—213. [In Russ].

8. Tianwei L., Hongwei Zh., Sheng L., Batugin A. S., Wiguo Zh., Qiang L., Sujan S. Application and development of the method of geodynamic zoning for forecasting the geodynamical danger at coal mines of China. Proceedings of higher educational establishments. Geology and Exploration. 2018, no. 6, pp. 71—76. [In Russ]. DOI: 10.32454/0016-7762-2018-6-71-76.

9. Gorbunova E., Besedina A., Petukhova S., Pavlov D. Reaction of the underground water to seismic impact from industrial explosions. Water. 2023, vol. 15, article 1358. DOI: 10.3390/w15071358.

10. Huang L., Xu Y., Liu S., Gai Q., Miao W., Li Y., Zhao L. Research on the development law of pre-mining microseisms and risk assessment of floor water inrush: A case study of the wutongzhuang coal mine in China. Sustainability. 2022, vol. 14, article 9774. DOI: 10.3390/su14159774.

11. Lai X., Dai J., Xu H., Chen X. Multifield environmental analysis and hazards prevention of steeply inclined deep coal mining. Advances in Civil Engineering. 2021, vol. 2021, article 6651088. DOI: 10.1155/2021/6651088.

12. Kozyrev A. A., Batugin A. S., Zhukova S. A. Influence of water content on seismic activity of rocks mass in apatite mining in Khibiny. Gornyi Zhurnal. 2021, no. 1, pp. 31—36. [In Russ]. DOI: 10. 17580/gzh.2021.01.06.

13. Zhuravleva O. G., Zhukova S. A. Identification of instability periods during formation of undermined rock cavings in the tectonically stressed Khibiny massif. Russian Mining Industry Journal. 2023, no. S5, pp. 100—106. [In Russ].

14. Besedina A. N., Kishkina S. B., Kocharyan G. G., Kulikov V. I., Pavlov D. V. Weak induced seismicity in the Korobkov iron ore field of the Kursk Magnetic Anomaly. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2020, vol. 3, pp. 12—24. [In Russ]. DOI: 10.15372/FTPRPI20200302.

15. Zheleznye rudy KMA: monografiya. Pod red. V. P. Orlova, I. A. Shevyreva, N. A. Sokolova [Iron ores of KMA: monograph. Orlov V. P., Shevyrev I. A., Sokolov N. A. (eds.)], Moscow, Geoinformmark, 2001, 616 p.

16. Mokhov A. V. Hydrodynamic regime of groundwater in mining allotments of coal and shale mines. Doklady Akademii nauk. 2018, vol. 483, no. 1, pp. 68. [In Russ]. DOI: 10.31857/S086956520003414-8.

17. Kocharyan G. G., Kulikov V. I., Pavlov D. V. On the influence of massive explosions on the stability of tectonic faults. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2019, no. 6, pp. 49—58. [In Russ]. DOI: 10.15372/FTPRPI20190605.

18. Petukhova S. M., Gorbunova E. M. Deformation regimes of fluid-saturated reservoirs under seismic impact according to precision hydrogeological monitoring data (a review). Dynamic Processes in Geospheres. 2023, vol. 15, no. 4, pp. 44—59. [In Russ]. DOI: 10.26006/29490995_2023_15_4_44.

19. Kocharyan G. G., Zolotukhin S. R., Kalinin E. V., Panasyan L. L., Spungin L. L. Stress-strain state of the rock mass of the Korobkovsky iron ore deposit in the area of the zone of tectonic disturbances. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2018, no. 1, pp. 1—9. [In Russ]. DOI: 10.15372/FTPRPI20180102.

20. Leyzerovich S. G., Pomel'nikov I. I., Sidorchuk V. V., Tomaev V. K. Resursovosproizvodyashchaya bezotkhodnaya geotekhnologiya kompleksnogo osvoeniya mestorozhdeniy Kurskoy magnitnoy anomalii. [Resource-reproducing waste-free geotechnology for the integrated development of deposits of the Kursk magnetic anomaly], Moscow, Izd-vo «Gornaya kniga», 2012, 547 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.