Lattice equivalent circuit for induction motors of transport units of mining equipment

Authors: Blanc A. V.

The mining industry increasingly wider uses linear induction motors with a live part (the so-called secondary cell) made as a solid bimetallic plate. One layer of the bimetallic plate is a thin conducting sheet which acts as a short-circuit winding. The second layer is a ferromagnetic sheet to bridge lines of fluxes of magnetic field. Functionally, this is an analog of a rotor frame of a conventional electrical machine. Electromagnetic field of such motors possesses features uncharacteristic for the field of rotating electrical machines. High density of the drive current, and high current saturation of the stator teeth and the ferromagnetic layer of the secondary cell make it impossible to calculate the field of a linear induction motor in a linear formulation. The article describes a nonlinear lattice equivalent circuit for calculating electromagnetic field of a linear induction motor, which is synthesized using some simplifications. The field nonuniformity at the faces and across the width of the motor is disregarded, and the field is calculated as a plane-parallel field at a double polar pitch. The temperature dependence of the magnetic capacity of the ferromagnet is neglected. The eddy currents in the stator and in the ferromagnetic layer of the secondary cell are bypassed. The lattice equivalent circuit is synthesized in circuit analysis program Micro-Cap 7, and the test calculations are carried out in FEMbased program Femm 4.2. The comparison of the modeling and calculation results of a linear induction motor prove correctness and high accuracy of the developed computational model.

Keywords: electric mining equipment, transport units, linear induction motors, massive secondary cell, lattice equivalent circuits, nonlinear magnetic properties, electromagnetic field theory, circuit theory.
For citation:

Blanc A. V. Lattice equivalent circuit for induction motors of transport units of mining equipment. MIAB. Mining Inf. Anal. Bull. 2025;(2):157-169. [In Russ]. DOI: 10.25018/ 0236_1493_2025_2_0_157.

Acknowledgements:
Issue number: 2
Year: 2025
Page number: 157-169
ISBN: 0236-1493
UDK: 621.313.333.821:622
DOI: 10.25018/0236_1493_2025_2_0_157
Article receipt date: 28.06.2024
Date of review receipt: 31.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.01.2025
About authors:

A.V. Blanc, Cand. Sci. (Eng.), Assistant Professor, Novosibirsk State Technical University, 630073, Novosibirsk, Russia, e-mail: alblances@yandex.ru, ORCID ID: 0000-0003-0582-1257.

 

For contacts:
Bibliography:

1. Sarapulov F. N., Smol'yanov I. A. Research of drive linear induction motor for conveyor train. Russian Electromechanics. 2019, vol. 62, no. 1, pp. 39—43. [In Russ]. DOI: 10.17213/0136-3360-2019-1-39-43.

2. Simonov B. F., Vovk V. S., Pogarskii Yu. V., Kadyshev A. I. Electromagnetic hammers for marine construction in petroleum production. PROneft. Professionally about Oil. 2019, no. 2(12), pp. 59—65. DOI: 10.24887/2587-7399-2019-2-59-65.

3. Vasin K. A., Edygenov E. K., Aldiyarov N. U., Voronin V. V. Digital measurement technique dynamic and energy characteristics of the break-destructive machine for unlimited destruction of mountain breeds. Bulletin of Pacific national university. 2019, no. 3 (54), pp. 9—16. [In Russ].

4. Edygenov E. K. Linear electromagnetic motor mining machines. Modern problems of the theory of machines. 2019, no. 8, pp. 81—84. [In Russ]. DOI: 10.26160/2307-342X-2019-8-81-84.

5. Simonov B. F., Kordubaylo A. O., Neyman V. Yu., Polischuk A. E. Working processes in the pulse leaner electromagnetic drive of the downhole vibrosource. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2018, no. 1, pp. 71—78. [In Russ]. DOI: 10.15372/FTPRPI20180109.

6. Leutkin A. A. Increasing the efficiency of the power supply and control system of the downhole vibrosource. Nauka. Tekhnologii. Innovatsii. Sbornik nauchnykh trudov XVI Vserossiyskoy nauchnoy konferentsii molodykh uchenykh [Sciences'. Technologies. Innovation. Collection of scientific papers of the XVI All-Russian Scientific Conference of Young Scientists], vol. 6. 2022, pp. 35—38. [In Russ].

7. Kordubaylo A. O., Simonov B. F. The research of the constructions of the downhole electromagnetic pulse vibrosource. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2020, no. 5, pp. 146—153. [In Russ]. DOI: 10.15372/FTPRPI20200517.

8. Turpak A. M. Recording the rod end position in the indirect vector control of the immersed linear motor. Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatatsii gornoshakhtnogo i neftepromyslovogo oborudovaniya [Actual problems of increasing the efficiency and safety of mining and oilfield equipment operation], vol. 1. 2017, pp. 138—144. [In Russ].

9. Konev K. A., Furina A. O., Korotaev, A. D., Chabanov E. A. Cylindrical linear valve motor for shaftless oil recovery. Perm national research polytechnic university bulletin. Electrotechnics, information technologies, control systems. 2021, no. 39, pp. 150—168. [In Russ]. DOI: 10.15593/2224-9397/ 2021.3.08.

10. Artykaeva E. M., Vasileva L. N. Linear cylindrical valve motor for oil extraction. Vestnik Chuvashskogo universiteta. 2023, no. 2, pp. 18—23. [In Russ]. DOI: 10.47026/1810-1909-2023-2-18-23.

11. Elmorshedy M. F., Xu W., Liu Y., Allam S. M., Ali M. M., Dong M. Sensorless direct thrust control of a linear induction motor based on MRAS. 12th International Symposium on Linear Drives for Industry Applications (LDIA), Neuchatel, Switzerland. 2019, pp. 1—6. DOI: 10.1109/LDIA.2019. 8770984.

12. Accetta A., Cirrincione M., Pucci M., Sferlazza A. State space-vector model of linear induction motors including end-effects and iron losses. Part I: Theoretical analysis. IEEE Transactions on Industry Applications. 2020, vol. 56, no. 1, pp. 235—244. DOI: 10.1109/TIA.2019.2952031.

13. Sun Z., Xu L., Zhao W., Du K. Comparison between linear induction motor and linear primary permanent magnet vernier motor for railway transportation. 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China. 2021, pp. 1—6. DOI: 10.1109/LDIA49489. 2021.9505835.

14. Li Z., Zhou S., Xiao Y., Wang L. Sensorless vector control of permanent magnet synchronous linear motor based on self-adaptive super-twisting sliding mode controller. IEEE Access. 2019, vol. 7, pp. 44998—45011. DOI: 10.1109/ACCESS.2019.2909308.

15. Jiang D., Yu W., Wang J., Zhao Y., Li Y., Lu Y. A speed disturbance control method based on sliding mode control of permanent magnet synchronous linear motor. IEEE Access. 2019, vol. 7, pp. 82424—82433. DOI: 10.1109/ACCESS.2019.2922765.

16. Lv G., Zhang Z., Liu Y., Zhou T. Analysis of forces in linear synchronous motor with propulsion, levitation and guidance for high-speed maglev. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2022, vol. 10, no. 3, pp. 2903—2911. DOI: 10.1109/JESTPE.2021.3065459.

17. Poltschak F., Thalhammer R. Winding layout for active bearing force reduction in tubular linear motors. 12th International Symposium on Linear Drives for Industry Applications (LDIA), Neuchatel, Switzerland. 2019, pp. 1—6. DOI: 10.1109/LDIA.2019.8771022.

18. Tan Q., Huang X., Li L., Wang M. Analysis of flux linkage and detent force for a modular tubular permanent magnet synchronous linear motor with large slots. IEEE Transactions on Energy Conversion. 2019, vol. 34, pp. 3, pp. 1532—1541. DOI: 10.1109/TEC.2019.2912873.

19. Consolo V., Musolino A., Rizzo R., Sani L. Design of a dual Halbach array tubular linear motor for long stroke and large force. International Conference on Electrical Machines (ICEM), Gothenburg, Sweden. 2020, pp. 647—653. DOI: 10.1109/ICEM49940.2020.9270700.

20. Blanc A. V. Modeling the mine motor by means of the lattice equivalent circuit with the sinusoidal current sources. MIAB. Mining Inf. Anal. Bull. 2022, no. 12-2, pp. 58—69. [In Russ]. DOI: 10.25 018/0236_1493_2022_122_0_58.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.