Reverse engineering for spare parts of load–haul–dumpers at a mine service station

The essence and role of reverse engineering in repair of load–haul–dumpers (LHD) at foreign manufacturers are discussed. To that end, spare parts of LHD are classified into typical, unique and standardized. Based on the classification of spare parts, the reverse engineering methods are rated by the level of their complexity and labor content. The proposed algorithm demonstrates the place and role of the reverse engineering in the process of LHD repair, and makes it possible to assess possibility and expediency of application of the elaborated analog operating process of the reverse engineering for the typical and unique spare parts. As a result of the study, the function-and-information modeling of the reverse engineering was performed for a sample of an original part using methodology Icam DEFinition for Function Modeling. The latter model is developed for the decomposition and system description of the reverse engineering process, and for determining all input and output data, necessary human and material resources, as well as controlling mechanisms, limitations and standards at each stage of the reverse engineering. By way of illustration of application of the analog operating reverse engineering process at a repair station of a mine, the reverse engineering of a hydraulic cylinder piston of LHD is described. This example illustrates the spare part drafting using a real sample to manufacture an analog spare part to replace the absent original part of LHD during its maintenance support.

Keywords: reverse engineering, spares backing, maintenance support, mining machines, drafting, import substitution of spare parts, load–haul–dumpers, spare parts, function modeling methodology.
For citation:

Marat R. T., Maslyakov N. S., Solovyh D. Y. Reverse engineering for spare parts of load–haul–dumpers at a mine service station. MIAB. Mining Inf. Anal. Bull. 2025;(5):65-83. [In Russ]. DOI: 10.25018/0236_1493_2025_5_0_65.

Acknowledgements:
Issue number: 5
Year: 2025
Page number: 65-83
ISBN: 0236-1493
UDK: 658.58
DOI: 10.25018/0236_1493_2025_5_0_65
Article receipt date: 26.09.2022
Date of review receipt: 16.12.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2025
About authors:

R.T. Marat1, Graduate Student, e-mail: marat.rayim@gmail.com,
N.S. Maslyakov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: n.s.maslyakov@yandex.ru, ORCID ID: 0000-0002-3221-8990,
D.Y. Solovyh1, Cand. Sci. (Eng.), Assistant Professor, e-mail: podzemmash@yandex.ru, ORCID ID: 0000-0001-8734-1796,
1 NUST MISIS, 119049, Moscow, Russia.

 

For contacts:

R.T. Marat, e-mail: marat.rayim@gmail.com.

Bibliography:

1. Maslyakov N. S. Obosnovanie i razrabotka metoda povysheniya tekhnicheskoy gotovnosti pri ekspluatatsii pogruzochno-dostavochnykh mashin [Justification and development of a method for increasing technical readiness in the operation of loading and delivery machines], Candidate’s thesis, Мoscow, MISiS, 2016, 25 p.

2. Syrkin C. C., Khayrullin N. D., Krotov A. O., Pechenkin M. V. Application of reverse engineering methods to the inspection of complex-profile mechanical engineering components. Sovremennye problemy razvitiya tekhniki, ekonomiki i obshchestva. Materialy II Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Modern problems of technology, economy and society development. Proceedings of the II International Scientific and Practical Conference], Kazan, 2017, pp. 121—125. [In Russ].

3. Sasa D. A., Tarahovski A. U. Application of a multifunctional measuring manipulator for controlling parameters obtained after machining operation. Journal of modern technologies. 2020, no. 3, pp. 54—59. [In Russ].

4. Messler R. W. Reverse engineering: Mechanisms, structures, systems & materials. New York: McGraw Hill Professional, 2013, 448 p.

5. Epifancev K. V. Analysis of software packages used for automation of measurements. Al'manac of modern metrology . 2021, no. 3, pp. 167—181. [In Russ].

6. Chernov R. S., Mishkina L. A., Strelyanaya Yu. O. Solving production tasks in modern realities. Mehatronica, avtomatica i robototechnika. 2022, no. 10, pp. 48—51. [In Russ]. DOI: 10.26160/25418637-2022-10-48-51.

7. Grigorev P. A., Nekludov A. N., Troshko I. V. Modern 3D printing technologies for import substitution details of ground vehicles. Vysokie tekhnologii v stroitel'nom komplekse. 2022, no. 2, pp. 69—72. [In Russ].

8. Wang W. Reverse engineering: Technology of reinvention. Boca Raton: CRC Press, 2011, 357 p.

9. Vinesh R., Kiran J. F. Reverse engineering an industrial perspective. London: Springer London, 2007, 242 p.

10. Selishchev D. N. Automation of design on the basis of reverse engineering. Shag v nauku. 2019, no. 2, pp. 62—64. [In Russ].

11. Surina N. V., Mnatsakanyan V. U. Cad of technological processes of repair production. Modern problems of the theory of machines. 2019, no. 8, pp. 94—96. [In Russ]. DOI: 10.26160/2307-342X2019-8-94-96.

12. Surina N. V., Mnatsakanyan V. U. Automated process design system for mining equipment repair. Gornyi Zhurnal. 2019, no. 7, pp. 90—95. [In Russ]. DOI: 10.17580/gzh.2019.07.08.

13. Fedorova I. G., Filimonova T. S., Zhuravlev E. V., Vasiliev V. V. Estimation of the possibility of using reverse engineering in the aviation industry. Computational Nanotechnology. 2019, vol. 6, no. 3, pp. 68—73. [In Russ]. DOI: 10.33693/2313-223X-2019-6-3-68-73.

14. Tarakhovskiy A. Yu., Smirnov I. A. Reverse engineering of the compressor crankshaft.Transport, mining and construction engineering: science and production. 2023, no. 18, pp. 91—97. DOI: 10.26160/2658-3305-2023-18-91-97.

15. Stănăşel J., Blaga F., Buidoş T., Crăciun D. Reverse engineering and CAD-CAM approach for manufacturing of spare parts. Case study. MATEC Web of Conferences. 2018, vol. 184, article 4. DOI: 10.1051/matecconf/201818403004.

16. Sokół K., Cekus D. Reverse engineering as a solution in parts restoration process. Procedia Engineering. 2017, vol. 177, pp. 210—217. DOI: 10.1016/j.proeng.2017.02.191.

17. Bauer F., Schrapp M., Szijarto M. Accuracy analysis of a piece-to-piece reverse engineering workflow for a turbine foil based on multi-modal computed tomography and additive manufacturing. Precision Engineering. 2019, vol. 60, pp. 63—75. DOI: 10.1016/j.precisioneng.2019.07.008.

18. Anwer N., Mathieu L. From reverse engineering to shape engineering in mechanical design. CIRP Annals. 2016, vol. 65, no. 1, pp. 165—168. DOI: 10.1016/J.CIRP.2016.04.052.

19. Lingling Li, Congbo Li, Ying Tang, Yanbin Du An integrated approach of reverse engineering aided remanufacturing process for worn components. Robotics and Computer-Integrated Manufacturing. 2017, vol. 48, pp. 39—50. DOI: 10.1016/j.rcim.2017.02.004.

20. Rozesara M., Ghazinoori S., Manteghi M., Tabatabaeian S. H. A reverse engineering-based model for innovation process in complex product systems: Multiple case studies in the aviation industry. Journal of Engineering and Technology Management. 2023, vol. 69. DOI: 10.1016/j.jengtecman.2023.101765.

21. Dúbravčík M., Kender S. Application of reverse engineering techniques in mechanics system services. Procedia Engineering. 2012, vol. 48, pp. 96—104. DOI: 10.1016/j.proeng.2012.09.491.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.