The results of testing the technology of hydraulic fracturing of the coal seam through wells from the surface at the Kirov mine

The article presents the results of a preliminary analysis of the application of complex degassing technology of the Boldyrevsky coal seam under development at the Kirov mine. Degassing was carried out at the currently used excavation site 24-63 and included hydraulic fracturing of the formation through wells drilled from the surface (FRAC); hydraulic fracturing it through wells drilled from preparatory workings (PodzGRP), as well as standard reservoir degassing (PPD) by rising and descending wells drilled from preparatory workings into partially disintegrated hydraulic separation is the area of the degassed reservoir. The main attention is paid to the hydraulic fracturing technology, first applied at the Kuzbass mines for the purposes of degassing preparation of the coal seam under development for intensive and safe mining. It is confirmed that the process of hydraulic fracturing of the coal seam with cyclic hydraulic fracturing was implemented at the wells of the excavation site 24-63 under hydrodynamic influence. An initial assessment of the effectiveness of the tested technology was obtained. In the course of the conducted studies, the zones of the excavation site 24-63, where the influence of hydraulic fracturing wells was presumably taking place, and the zones of the same site, where it was practically absent, were compared. At the time of writing, the average load in lava 24-63 for all hydraulic fracturing zones was 16% higher than in the comparison zones. Stops for airing in one production cycle for all zones of hydraulic fracturing are 15% less, the relative gas content for all zones of hydraulic fracturing is 12% lower, which also preliminarily confirms the technical effectiveness of the use of coal seam hydraulic fracturing technology for degassing purposes. The directions of technology improvement are shown.

Keywords: advance degassing, complex degassing preparation of the coal seam, wells from the surface, hydraulic fracturing, efficiency assessment methodology, regime of hydrodynamic impact, hydraulic fracturing with cyclic fracturing, efficiency of complex reservoir degassing, increased loads on the treatment face, reduction of lava gas content and downtime, implementation of the effect of coal swelling, the main technological conclusions and recommendations, directions for improving the technology.
For citation:

Slastunov S. V., Sadov A. P., Khautiev A. M.-B., Komissarov I. A. The results of testing the technology of hydraulic fracturing of the coal seam through wells from the surface at the Kirov mine. MIAB. Mining Inf. Anal. Bull. 2022;(11):121-132. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_121.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 121-132
ISBN: 0236-1493
UDK: 622.817.47
DOI: 10.25018/0236_1493_2022_11_0_121
Article receipt date: 01.07.2022
Date of review receipt: 23.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

S.V. Slastunov, Dr. Sci. (Eng.), Professor, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: slastunovsv@mail.ru, URSID ID: 0000-0003-0744-6892,
A.P. Sadov1, Cand. Sci. (Eng.), Director, e-mail: sadovap@suek.ru,
A.M.-B. Khautiev1, Cand. Sci. (Eng.), Engineer-Technologist, e-mail: khautievam@suek.ru,
I.A. Komissarov1, Deputy Chief Engineer, e-mail: komissarovia@suek.ru,
1 Methane Degassing and Utilization Department, SUEK-Kuzbass JSC, Leninsk-Kuznetsky, Russia.

 

For contacts:

S.V. Slastunov, e-mail: slastunovsv@mail.ru.

Bibliography:

1. Yutyaev E. P. Obosnovanie tekhnologii intensivnoy podzemnoy razrabotki vysokogazonosnykh ugol'nykh plastov [Substantiation of the technology of intensive underground mining of high-gas-bearing coal seams], Doctor’s thesis, Kemerovo, KuzGTU, 2019, 45 p.

2. Zaburdyaev V. S., Zakharov V. N., Artem'ev V. B., Yasyuchenya S. V. Shakhtnyy metan: problemy izvlecheniya i utilizatsii [Mine methane: problems of extraction and utilization], Moscow, «Gornoe delo» OOO «Kimmeriyskiy tsentr», 2014, 256 p.

3. Slastunov S. V., Mazanik E. V., Sadov A. P., Khautiev A. M.-B. Testing of integrated degasifying treatment technology based on hydraulic splitting of coal seam using surface holes. MIAB. Mining Inf. Anal. Bull. 2020, no. 2, pp. 58–70. [In Russ]. DOI: 10.25018/0236-14932020-2-0-58-70.

4. Slastunov S. V., Karkashadze G. G., Kolikov K. S., Yutyaev E. P. Patent RU 2659298. 29.06.2018. [In Russ].

5. Ponizov A. V. Razrabotka kompleksnoy tekhnologii degazatsionnoy podgotovki ugol'nogo plasta na osnove ego gidrodinamicheskoy obrabotki [Development of a complex technology of degassing preparation of a coal seam based on its hydrodynamic treatment], Candidate’s thesis, Moscow, NITU «MISiS», 2021, 24 p.

6. Naik S., Yang S., Bedrikovetsky P., Woolley M. Analytical modelling of the water block phenomenon in hydraulically fractured wells. Journal of Natural Gas Science and Engineering. 2019, vol. 67, pp. 56—70. DOI: 10.1016/j.jngse.2019.04.018.

7. Burlutskii E. An assessment of the effectiveness of the analytical methods to fracture propagation control using accurate mathematical modelling. Journal of Natural Gas Science and Engineering. 2019, vol. 62, pp. 294—301. DOI: 10.1016/j.jngse.2018.12.017

8. Li Zhang, Hui Zhang, Hao Guo A case study of gas drainage to low permeability coal seam. International Journal of Mining Science and Technology. 2017, vol. 27, no. 4, pp. 687— 692. DOI: 10.1016/j.ijmst.2017.05.014.

9. Sampath K. H. S. M., Perera M. S. A., Ranjith P. G. Theoretical overview of hydraulic fracturing break-down pressure. Journal of Natural Gas Science and Engineering. 2018, vol. 58, pp. 251—265. DOI: 10.1016/j.jngse.2018.08.012.

10. Nozhkin N. V. Zablagovremennaya degazatsiya ugol'nykh mestorozhdeniy [Advance degassing of coal deposits], Moscow, Nedra, 1979, 383 p.

11. Chernov O. I., Cherkasov V. S., Gorbachev A. G. Dvizhenie zhidkosti v ugol'nykh plastakh [Fluid motion in coal seams], Novosibirsk, Nauka, 1981, 214 p.

12. Plaksin M. S., Rodin R. I., Alkov V. I. Gas-kinetic reaction of a carbon-methane formation when cracks are created in it by injection of fluids. Naukoemkie tekhnologii razrabotki i ispol'zovaniya mineral'nykh resursov: sbornik nauchnykh statey [High-tech technologies for the development and use of mineral resources: collection of scientific articles], Novokuznetsk, SibGIU, 2017, pp. 63—67.

13. Guo J., Lu Q., Chen H., Wang Z., Chen L., Tang X. Quantitative phase field modeling of hydraulic fracture branching in heterogeneous formation under anisotropic in-situ stress. Journal of Natural Gas Science and Engineering. 2018, vol. 56, pp. 455—471. DOI: 10.1016/j. jngse.2018.06.009.

14. Liu Y., Tang D., Xu H., Li S., Tao S. The impact of coal macrolithotype on hydraulic fracture initiation and propagation in coal seams. Journal of Natural Gas Science and Engineering. 2018, vol. 56, pp. 299—314. DOI: 10.1016/j.jngse.2018.06.013.

15. Yutyaev E. P., Sadov A. P., Meshkov A. A., Khautiev A. M., Tailakov O. V., Utkaev E. A. Evaluation of filtration properties of coal in hydrodynamic tests of degassing reservoir wells. Ugol'. 2017, no. 11, pp. 24–29. [In Russ]. DOI: 10.18796/0041-5790-2017-11-24-27.

16. Pavlenko M. V. Formation of wave disturbances through wells in the coal massif in the form of vibration vibrations to create gas-conducting cracks in them. MIAB. Mining Inf. Anal. Bull. 2016, no. 5, pp. 36—42.

17. Karkashadze G. G., Khautiev A. M.-B. Mechanism of increasing the gas permeability of a coal seam in the process of cyclic sorption shrinkage and swelling of coal. MIAB. Mining Inf. Anal. Bull. 2015, no. 4, pp. 249—255. [In Russ].

18. Fan C., Li S., Luo M., Mingkun W. Du, Yang Z. Coal and gas outburst dynamic system. International Journal of Mining Science and Technology. 2017, vol. 27, no. 1, pp. 49—55. DOI: 10.1016/j.ijmst.2016.11.003.

19. Ageev P. G., Ageev N. P., Ageev D. P., Desyatkin A. S., Pashchenko A. F. Plasma-pulse impact — an innovative approach to the extraction of traditional and unconventional approach to the extraction of traditional and unconventional hydrocarbons and early degassing of coal seams. Burenie i neft'. 2016, no. 7-8, pp. 34—40. [In Russ].

20. Gent Jiabo, Xu Jiang, Nie Wen, Peng Shoujian, Zhang Chaolin, Luo Xiaohang Regression analysis of major parameters affecting the intensity of coal fnd gas outbursts in laboratory. International Journal of Mining Science and Technology. 2017, vol. 27, no. 2, pp. 327—332. DOI: 10.1016/j.ijmst.2017.01.004.

21. Korshunov G. I., Shipulin A. V., Seregin A. S. Increasing the gas permeability of coal by pulse-wave action through wells. Gas Industry Journal. 2012, no. 672, pp. 46—47. [In Russ].

22. Steflyuk Yu. M. Obosnovanie vybora tekhnologii plastovoy degazatsii vybrosoopasnykh ugol'nykh plastov dlya obespecheniya ikh bezopasnoy i intensivnoy otrabotki [Justification of the choice of technology of reservoir degassing of explosive coal seams to ensure their safe and intensive mining], Candidate’s thesis, Moscow, MGGU, 2012, 24 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.