Pilot test data on corrosion resistance of nitrided ferrosilicium in long-term contact with mineralized water

With regard to the previous research findings, the pilot processing testing of a trial batch of ferrosilicium grade DMS 270 was undertaken in rational conditions at the temperature of 1000 °C, curing time of 2 h, nitrogen pressure of 1.25 atm and using the method of nitration. The comparative experimentation procedure is developed and approved for the assessment of variation in the properties of ordinary and nitrided ferrosilicium in the long-term contact with mineralized recycling water on a pilot plant of float-and-sink separation at concentration factory No. 3 of Mirny Mining and Processing Plant. The pilot tests of corrosion resistance of nitride ferrosilicium in the long-term contact of mineralized recycling water of float-and sink separation were carried out. The process control used the procedural parameters and included daily sampling of ferrosilicium from the working suspension and magnetic separator tailings after ferrosilicium suspension regeneration cycle. The daily change in the amount of ferrosilicium in the active volume of the suspension is evaluated. The comparison of the quantitative and qualitative data of the pilot tests, duly certified, proved an increase in the daily loss of the nonmagnetic fraction in the amount of 4 kg and 2.5 kg over the period of testing the ferrosilicium suspension made of ordinary and nitrided ferrosilicium, respectively. The mathematical treatment of the results shows that nitrided ferrosilicium possesses high corrosion resistance and process parameters which prolong the use life of the product by no less than 2.2 times.

Keywords: water-based systems, ferrosilicium, nitration, pilot testing, float-and-sink separation, granules, corrosion resistance, aggregative stability, loss.
For citation:

Dvoichenkova G. P., Timofeev A. S., Podkamenny Yu. A. Pilot test data on corrosion resistance of nitrided ferrosilicium in long-term contact with mineralized water. MIAB. Mining Inf. Anal. Bull. 2023;(9):114-129. [In Russ]. DOI: 10.25018/0236_1493_2023_ 9_0_114.

Issue number: 9
Year: 2023
Page number: 114-129
ISBN: 0236-1493
UDK: 622.766.47
DOI: 10.25018/0236_1493_2023_9_0_114
Article receipt date: 08.05.2023
Date of review receipt: 13.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

G.P. Dvoichenkova1,2, Dr. Sci. (Eng.), Assistant Professor, Chief Researcher; Professor, e-mail: dvoigp@mail.ru, ORCID ID: 0000-0002-0940-3880,
A.S. Timofeev1, Cand. Sci. (Eng.), Senior Researcher, e-mail: Timofeev_ac@mail.ru, ORCID ID: 0000-0002-3382-6007,
Yu.A. Podkamenny1,2, Cand. Sci. (Eng.), Researcher; Lecturer, e-mail: mirniy.yuriy@mail.ru, ORCID ID: 0000-0002-4104-9113,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia,
2 Polytechnic Institute (branch), M.K. Ammosov North-Eastern Federal University, 678170, Mirny, Republic of Sakha (Yakutia), Russia.


For contacts:

G.P. Dvoichenkova, e-mail: dvoigp@mail.ru.


1. Chanturia V. A., Bondar S. S., Godun K. V., Goryachev B. E. The current state of the diamond mining industry in Russia and the main diamond-mining countries of the world (Part 2). Gornyi Zhurnal. 2015, no. 2, pp. 67—75. [In Russ]. DOI: 10.17580/gzh.2015.03.11.

2. Bogdanovich A. V., Vasiliev A. M., Urnysheva S. A. Influence of ore preparation of diamond-bearing ores on the technology of their enrichment. Obogashchenie Rud. 2017, no. 2, pp. 10—15. [In Russ]. DOI: 10.17580/or.2017.02.02.

3. Napier-Munn T. The dense medium cyclone — past, present and future. Minerals Engineering. 2018, vol. 116, pp. 107—113. DOI: 10.1016/j.mineng.2017.10.002.

4. Ivannikov A. L., Kongar-Syuryun C., Rybak J., Tyulyaeva Y. The reuse of mining and construction waste for backfill as one of the sustainable activities. IOP Conference Series: Earth and Environmental Science. 2019, vol. 362, no. 1, article 012130. DOI: 10.1088/1755-1315/362/ 1/012130.

5. Williams R. A., Kelsall G. H. Degradation of ferrosilicon media in dense medium separation circuits. Minerals Engineering. 1992, vol. 5, no. 1, pp. 57—77.

6. Pavlov A. V., Ostrovsky D. Ya., Aksenova V. V., Bishenov S. A. The current state of the production of ferroalloys in Russia and the CIS countries. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 8, pp. 600—605. [In Russ]. DOI: 10.17073/0368-0797-2020-8-600-605.

7. Chanturiya V. A., Kozlov A. P., Shadrunova I. V., Ozhogina E. G. Priority directions for the development of search and applied scientific research in the field of industrial use of mining and processing waste. Russian Mining Industry Journal. 2014, no. 1, pp. 54. [In Russ].

8. Makhrachev A. F., Larionov N. P., Savitsky V. B. New directions in the technology of beneficiation of diamond-containing raw materials at the enterprises of JSC «ALROSA». Gornyi Zhurnal. 2005, no. 7, pp. 65—68. [In Russ].

9. Avdokhin V. M., Chernysheva E. N. Reduction of ferrosilicon losses in the process of heavy-medium separation of diamond-containing raw materials. MIAB. Mining Inf. Anal. Bull. 2002, no. 4, pp. 240—244. [In Russ].

10. Chernysheva E. N. Increasing the efficiency of heavy-medium enrichment of diamondbearing kimberlites based on electrochemical conditioning of ferrosilicon suspension. MIAB. Mining Inf. Anal. Bull. 2010, no. 2, pp. 403—404. [In Russ].

11. Timofeev A. S., Ananiev P. P., Dvoychenkova G. P. Mathematical model of oxidation of ferrosilicon granules in mineralized waters. MIAB. Mining Inf. Anal. Bull. 2017, special edition 8, pp. 3—11. [In Russ].

12. Chanturiya V. A., Dvoychenkova G. P., Chanturiya E. L., Timofeev A. S. Intensification of separation processes of refractory diamond-bearing raw materials of primary, placer and technogenic deposits. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2022, no. 5, pp. 95—108. [In Russ]. DOI: 10.15372/FTPRPI20220510.

13. Kryukova O. G., Bolgaru K. A., Avramchik A. N. Combustion of ferrosilicon-zircon mixtures in nitrogen gas: impact of aluminum additives. International Journal of Self-Propagating HighTemperature Synthesis. 2021, vol. 30, no. 4, pp. 236—240. DOI: 10.3103/s1061386221040051.

14. Manasheva E. M., Manashev I. R., Zathdinov M. Kh., Makarova I. V. Development and application of SHS ferrosilicon nitride to increase the resistance of taphole clays for blast furnaces. Refractories and Industrial Ceramics. 2022, vol. 62, no. 6, pp. 692—698. DOI: 10.1007/ s11148-022-00664-2.

15. Runci A., Provis J. L., Serdar M. Revealing corrosion parameters of steel in alkaliactivated materials. Corrosion Science. 2023, vol. 210, part 2, article 110849, DOI: 10.1016/j. corsci.2022.110849.

16. Mikhaylenko A. A., Gogotsi Yu. G., Rudenko O. K. Patent SU 1654258 A1. C01B 21/072. 1991. [In Russ].

17. Bolgaru K. A., Akulinkin A. A., Kryukova O. G. Effect of mechanical pre-activation on the nitriding of aluminum ferrosilicon in the combustion mode. Journal of Physics: Conference Series. 2020, vol. 1459, no. 1, article 012009. DOI: 10.1088/1742-6596/1459/1/012009.

18. Fengnian Shi. Determination of ferrosilicon medium rheology and stability. Minerals Engineering. 2016, vol. 98, pp. 60—70. DOI: 10.1016/j.mineng.2016.07.016.

19. Vavrenyuk S. V., Vavrenyuk V. G., Farafonov A. E. Increasing sedimentation stability of cement-mineral suspensions by adding the hydroxyl-containing water-soluble polymers. Materials Science Forum. 2023, vol. 1082, pp. 259—264. DOI: 10.4028/p-t2k71x.

20. Heebo Ha, Russ Thompson, Byungil Hwang Iron oxide layer effects on the sedimentation behavior of carbonyl iron powder suspension. Colloid and Interface Science Communications. 2022, vol. 50, article 100670. DOI: 10.1016/j.colcom.2022.100670.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.