Microseismic monitoring system of the pit’s board array based on seismic sensors in deep boreholes beyond the final pit contour

The features of the design and implementation of a seismic monitoring system for the state of the board of an open pit based on deep inclined boreholes with mouths outside the final pit contour are considered. The study used data obtained by the microseismic monitoring system of the Zhelezny mine of the Kovdorsky GOK (Murmansk region, Russia). The practice operating the system has shown that, due to the mining operations carried out in the career, the service life of boreholes with seismic sensors on the board of the career is limited. The task was to develop a configuration of the monitoring system that would ensure a long life of the seismic network, independent of the work carried out on board the open pit. The article analyzes the influence of the monitoring network configuration on the quality of the data received. The experience of practical implementation of such a system at an operating mining enterprise is stated and summarized. The metrological characteristics of the monitoring system have been calculated. It is shown that the described seismic network configuration can provide control of the entire near-side massive of the Zhelezny mine, with the exception of the upper horizons of the southwestern sides of the open pit. The data obtained during the operation with the system made it possible to establish relation that link the dynamics of microseismic activity in the nearboard rock mass and the development of deformation processes. Based on the work results, a microseismic monitoring system was created that is capable of providing natural seismicity of the open pit rock mass stable long-term recording and identifying zones of active fracturing. This material is of interest to specialists engaged in geophysical control of the state of geological environments under technogenic impacts and geomechanics of open pit mining.

Keywords: open pit mining, open pit, rock mass, monitoring, seismic method, seismic sensors, seismic network, metrological characteristics
For citation:

Kozyrev A. A., Kagan M. M., Chernobrov D. S., Panasenko I. G. Microseismic monitoring system of the pit’s board array based on seismic sensors in deep boreholes beyond the final pit contour. MIAB. Mining Inf. Anal. Bull. 2022;(12-1):155-165. [In Russ]. DOI: 10.2 5018/0236_1493_2022_121_0_155.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 155-165
ISBN: 0236-1493
UDK: 550.34.038
DOI: 10.25018/0236_1493_2022_121_0_155
Article receipt date: 25.03.2022
Date of review receipt: 05.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

A.A. Kozyrev1, Dr. Sci. (Eng.), Chief Researcher, e-mail: a.kozyrev@ksc.ru, ORCID ID: 0000-0002-8440-4971,
M.M. Kagan1, Senior Researcher, e-mail: m.kagan@ksc.ru, ORCID ID: 0000-0002-7748-3288,
D.S. Chernobrov1, Junior Researcher, e-mail: d.chernobrov@ksc.ru, ORCID ID: 0000-0002-1602-9217,
I.G. Panasenko1, Leading Programmer, e-mail: i.panasenko@ksc.ru, ORCID ID: 0000-0003-1234-4137,
1 Mining Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia.

 

For contacts:

D.S. Chernobrov, e-mail: d.chernobrov@ksc.ru.

Bibliography:

1. Malovichko D. A. Seismic hazard assessment in mines. Russian Journal of Seismology. 2020, no. 2(2), pp. 21—38. [In Russ]. DOI: 10.35540/2686-7907.2020.2.02.

2. Haile A., Ross D., Maldonado A., Neyaz M., Rajbhandari C. Slope Stability 2020: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mines and Civil Engineering. Australian Centre for Geomechanics, 2020, pp. 415—426. DOI: 10.36487/acg_repo/2025_23.

3. Goldswain G. Advances in seismic monitoring technologies. Proceedings of the Second International Conference on Underground Mining Technology. Australian Centre for Geomechanics, Perth, 2020, pp. 173—188. DOI: 10.36487/acg_repo/2035_05.

4. Petrik A. I., Bykhovets A. N., Sokharev V. A., Perein V. N., Serdyukov A. L. Modernization of the mineral resource base in the strategy of long-term development of Kovdorsky GOK. Gornyi Zhurnal. 2012, no. 10, pp. 12—18. [In Russ].

5. Kozyrev A. A., Savchenko S. N., Panin V. I., Semenova I. E., Rybin V. V., Fedotova Yu. V., Kozyrev S. A. Geomekhanicheskie protsessy v geologicheskoy srede gornotekhnicheskikh sistem i upravlenie geodinamicheskimi riskami [Geomechanical processes in the geological environment of mining systems and geodynamic risk management], Apatity, FITs KNTs RAN, 2019, 470 p. DOI: 10.25702/KSC. 978-5-91137-391-7.

6. Sharon R., Eberhardt E. Guidelines for Slope Performance Monitoring. CSIRO Publishing, Clayton, 2020, 245 p. DOI: 10.1071/9781486311002

7. Rybin V., Panin V., Kagan M., Konstantinov K. Geophysical monitoring as an inherent part of the technological process in deep open pits. Geomechanics and Geodynamics of Rock Masses. 2018, vol. 1, pp. 551—556.

8. Meshcheryakov K. A., YAtsenko V. A., Il'yasov S. E., Okromelidze G. V. Drilling of small diameter wells as a way to reduce costs during the construction of production and exploration wells. Territorija Neftegas. 2013, no. 10, pp. 28—31. [In Russ].

9. Mounfort P., Mendecki A. Mine seismology reference book: Seismic sensor. Institute of Mine Seismology, 2016, 64 p.

10. Arzumanyan A. G., Gomtsyan O. A., Sevoyan O. Zh. Synchronous data processing and transmission system with reference to the unified World time scale. Journal of the Russian Universities. Radioelectronics. 2016, no. 1, pp. 3–7. [In Russ].

11. Mendecki A. Mine seismology reference book: Seismic hazard. Institute of Mine Seismology, 2016, 88 p.

12. Razumov E. E., Prostov S. M., Mulev S. N., Rukavishnikov G. D. Seismic information processing algorithms. MIAB. Mining Inf. Anal. Bull. 2022, no. 2, pp. 17—29. [In Russ]. DOI: 10.25018/0236_1493_2022_2_0_17.

13. Douglas J. Ground motion prediction equations 1964—2019. United Kingdom, Glasgow: University of Strathclyde, 2019, 641 p.

14. Kagan M. M., Chernobrov D. S. Features of the propagation of seismic waves in the rock mass in the instrument area of the quarry. Monitoring prirodnykh i tekhnogennykh protsessov pri vedenii gornykh rabot: sbornik nauchnykh statey [Monitoring of natural and man-made processes during mining operations: collection of scientific articles], Saint-Petersburg, Renome, 2013, pp. 222—229.

15. Muqri M. R., Harper N., Muqri H., Wesr B. K. Leveraging the power of Matlab, SPSS, Excel, and Minitab for statistical analysis and inference. 2018 ASEE Annual Conference & Exposition. 2018, pp. 95—102. DOI: 10.18260/1-2--30772.

16. Glazer S. N. Mine Seismology: Data Analysis and Interpretation. Springer International Publishing, 2016, 421 p. DOI: 10.1007/978-3-319-32612-2_3.

17. Kagan M. M., Chernobrov D. S. Spatial clustering of seismic activity in the instrument area of a quarry (using the example of Zhelezny mine of the Kovdorsky GOK). MIAB. Mining Inf. Anal. Bull. 2015, no. S56, pp. 247—253. [In Russ].

18. Woodward K., Wesseloo J., Potvin Y. A spatially focused clustering methodology for mining seismicity. Engineering Geology. 2018, vol. 232, pp. 104—113.

19. Lyutoev V. A. Assessment of the degree of activity of fault zones based on the behavior of microseisms. Uspekhi sovremennogo estestvoznaniya. 2018, no. 12(1), pp. 168—174. [In Russ]. DOI: 10.17513/use.36992/

20. Adushkin V. V. Tekhnogennaya seysmichnost' — indutsirovannaya i triggernaya [Technogenic seismicity — induced and trigger], Moscow, IDG RAN, 2015, 364 p

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.