Reduction of respirable dust-induced impact on open pit mine personnel in large-scale blasting

Various genesis occupational diseases are the problem in mineral mining. The aeroinduced impact on personnel in an open pit mine, due to the increased dust content of air, leads to development of respiratory diseases. The main sources of dusting in open pit mining are drilling and blasting, rock excavation and haulage, and dumping. The heaviest impact is exerted on respiratory organs by respirable dust to 10 µm in size. Large-scale blasting leads to atomization of rocks and to a single-step emission of appreciable quantity of finest dust particles. Efficiency of dust combating in large-scale blasting depends on the local climate, physical and mechanical properties of rocks and blasting design. In the negative temperature seasons, dust suppression in large-scale blasting uses snow cover on a block subjected to blasting; in the positive temperature seasons, surfactants are added in hydraulic stemming of blast holes. This article describes the theoretical, in-situ and lab-scale research of the snow cover efficiency, and offers a substantiation of the selection procedure of hydraulic stemming composition using surface active substances for dust suppression in large-scale blasting.

Keywords: dust, large-scale blasts, dust load, dust diseases, dust suppression, respirable dust, dusting prediction, open pit mining.
For citation:

Korshunov G. I., Karimov A. M., Magamedov G. S., Tyulkin S. A. Reduction of respirable dust-induced impact on open pit mine personnel in large-scale blasting. MIAB. Mining Inf. Anal. Bull. 2023;(7):132-144. [In Russ]. DOI: 10.25018/0236_1493_2023_7_0_132.

Acknowledgements:
Issue number: 7
Year: 2023
Page number: 132-144
ISBN: 0236-1493
UDK: 331.45
DOI: 10.25018/0236_1493_2023_7_0_132
Article receipt date: 24.03.2023
Date of review receipt: 27.04.2023
Date of the editorial board′s decision on the article′s publishing: 10.06.2023
About authors:

G.I. Korshunov1, Dr. Sci. (Eng.), Professor, e-mail: korshunov_gi@pers.spmi.ru, ORCID ID: 0000-0003-2074-9695,
A.M. Karimov1, Graduate Student, e-mail: arturkarimov762@gmail.com, ORCID ID: 0000-0002-1261-6414,
G.S. Magamedov2, General Director, e-mail: aogku@yandex.ru,
S.A. Tyulkin2, Head of Drilling and Blasting Section, e-mail: aogku@yandex.ru,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia,
2 JSC «Gavrilovo Quarry Management», 188870, Gavrilovo, Russia.

 

For contacts:

A.M. Karimov, e-mail: arturkarimov762@gmail.com.

Bibliography:

1. Gendler S., Prokhorova E. Risk-based methodology for determining priority directions for improving occupational safety in the mining industry of the Arctic Zone. Resources. 2021, vol. 10, no. 3, article 20. DOI: 10.3390/resources10030020.

2. Hoebbel C. L., Haas E. J., Ryan M. E. Exploring worker experience as a predictor of routine and non-routine safety performance outcomes in the mining industry. Mining Metallurgy & Exploration. 2022, vol. 39, no. 2, pp. 485—494. DOI: 10.1007/s42461-021-00536-2.

3. Sarapulova G. I. Geochemical approach in assessing the technogenic impact on soils. Journal of Mining Institute. 2020, vol. 243, pp. 388—392. [In Russ]. DOI: 10.31897/PMI.2020.3.388.

4. Rogers W. P., Kahraman M., Drews F. A., Powell K. M., Haight J. M., Yaxue Wang, Baxla K., Sobalkar M. Automation in the mining industry: review of technology, systems, human factors, and political risk. Mining Metallurgy & Exploration. 2019, vol. 36, no. 9. DOI: 10.1007/s42461-019-0094-2.

5. Afanasev P., Pasynkov A., Kurta I. Optimal parameters for drilling explosions when developing coal deposits by open-pit method. E3S Web of Conferences. 2020, vol. 164, article 01012. DOI: 10.1051/e3sconf/202016401012.

6. Ilyashenko I. S., Kovshov S. V. Investigation of the adhesion properties of organic dust suppressants. E3S Web of Conferences. 2021, vol. 266, article 02014. DOI: 10.1051/e3sconf/ 202126602014.

7. Sychev Yu. A. , Kostin V. N., Serikov V. A., Aladin M. E. Nonsinusoidal modes in powersupply systems with nonlinear loads and capacitors in mining. MIAB. Mining Inf. Anal. Bull. 2023, no. 1, pp. 159—179. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_159.

8. Gusev V. N., Puporevich A. A. Improving accuracy of navigation using gyroscopes with regard to gyro drift and azimuth error. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 134—145. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_134.

9. Larichev A. Yu., Paramonov G. P., Pelekh M. T. The influence of the energy properties of explosives on the processes of dust and gas formation and fire and explosion safety. Problems of technosphere risk management. 2010, no. 4(16), pp. 60—64. [In Russ].

10. Sytenkov V. N., Rubtsov S. K., Bibik S. K. Ecological aspects in the production of mass explosions at quarries. Mining bulletin of Uzbekistan. 2008, no. 33, pp. 25—31. [In Russ].

11. Zykov Yu. N., Pernik L. M., Spivak A. A., Dust fallout from a gas-dust cloud during a mass explosion at a quarry. Nestatsionarnye protsessy v verkhnikh i nizhnikh obolochkakh Zemli (Geofizika sil'nykh vozmushcheniy): Sbornik nauchnykh trudov [Unsteady processes in the upper and lower shells of the Earth (Geophysics of strong disturbances). Collection of scientific papers], Moscow, IGD RAN, 2002, pp. 481—482.

12. Menzhulin M. G., Paramonov G. P., Shishov A. N. Method for calculating the parameters of stress waves and energy dissipation in the field of rock destruction during the explosion of elongated charges of various compositions and structures. Nauka v SPGGI. 1998, no. 3, pp. 205—219. [In Russ].

13. Kolesnik V. E., Yurchenko A. A., Litvinenko A. A., Pavlichenko A. V. Sposoby i sredstva povysheniya ekologicheskoy bezopasnosti massovykh vzryvov v zhelezorudnykh kar'erakh po pylevomu faktoru [Ways and means of improving the environmental safety of mass explosions in iron ore quarries by the dust factor], Dnepropetrovsk, 2014, 112 p.

14. Amkha B. G. Sovershenstvovanie metodiki rascheta pylegazovykh vybrosov v atmosferu pri vzryvnykh rabotakh na kar'erakh [Improving the methodology for calculating dust and gas emissions into the atmosphere during blasting operations at quarries], Tula, TulGU, 2008, 164 p.

15. Ochirov V. S. Nauchnoe obosnovanie sovershenstvovaniya tekhnologii vzryvnykh rabot dlya snizheniya pylegazo-akusticheskogo vozdeystviya na kar'erakh i rudnikakh Zabaykal'ya [Scientific substantiation of the improvement of blasting technology to reduce dust, gas and acoustic effects in quarries and mines of Transbaikalia], Ulan-Ude, VSGUTU, 2001, 308 p.

16. Tikhonova O. V. Obosnovanie parametrov burovzryvnykh rabot dlya snizheniya pylegazoobrazovaniya pri massovykh vzryvakh na kar'erakh stroitel'nykh materialov [Substantiation of the parameters of drilling and blasting operations to reduce dust and gas formation during mass explosions at quarries of building materials], Saint-Petersburg, SPGGI, 2006, 211 p.

17. Mikhaylova V. N., Balovtsev S. V., Khristoforov N. R. Assessment of occupational hearing disorder on the violation of Article 27 of Federal Law 52 in mining. MIAB. Mining Inf. Anal. Bull. 2018, no. 5, pp. 228—234. [In Russ]. DOI: 10.25018/0236-1493-2018-5-0-228-234.

18. Karkashadze G. G., Novikov I. V. Development of an effective method of dust suppression in the production of mass explosions at ore pits. Journal of Mining Institute. 2001, vol. 148, pp. 50—56. [In Russ].

19. Novikov I. V. Obosnovanie i razrabotka sposoba pylepodavleniya s realizatsiey protsessa nasyshcheniya vodoy pylevogo oblaka pri vzryvnykh rabotakh na kar'erakh [Justification and development of a method of dust suppression with the implementation of the process of saturation of a dust cloud with water during blasting operations at quarries], Moscow, MGGU, 2002, 46 p.

20. Smirnyakova V. V. About the long-term program of ensuring industrial and environmental safety in the coal industry. Journal of Mining Institute. 2014, vol. 207, pp. 155—158. [In Russ].

21. Zakharenkov V. V., Oleshchenko A. M., Pananotti E. A., Surzhikov D. V. Comprehensive assessment of health risk working in open-pit coal mining from the effects of physical factors. Bulletin of Eastern-Siberian scientific center. 2006, no. 3, pp. 49—52. [In Russ].

22. Syurin S. A., Gushchin I. V., Nikanov A. N. Professional pathology of workers of various industries of the copper-nickel industry of the Far North. Human ecology. 2012, no. 6, pp. 8—12. [In Russ].

23. Chebotarev A. G. Risks of development of occupational diseases of dust etiology in workers of mining enterprises. Russian Mining Industry Journal. 2018, no. 3(139), pp. 66—70. [In Russ]. DOI: 10.30686/1609-9192-2018-3-139-66-70.

24. Safina A. M. Obosnovanie parametrov gidroobespylivaniya dlya snizheniya aerotekhnogennogo vozdeystviya avtodorog na personal ugol'nykh razrezov [Substantiation of the parameters of hydro-spraying to reduce the aerotechnogenic impact of highways on the personnel of coal mines], Saint-Petersburg, SPGU, 2019, 93 p.

25. Larichev A. Yu. Obosnovanie ratsional'nykh parametrov burovzryvnykh rabot dlya snizheniya vrednykh vybrosov pyli i gaza pri proizvodstve massovykh vzryvov na kar'erakh [Justification of rational parameters of drilling and blasting operations to reduce harmful emissions of dust and gas during the production of mass explosions at quarries], Moscow, 2012, 153 p.

26. Vasilets V. V., Afanasev P. I., Pavlovich A. A. Safe operation of mining-and-transport system under impact of seismic shot waves. MIAB. Mining Inf. Anal. Bull. 2020, no. 1, pp. 26—35. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-26-35.

27. Gendler S. G., Borisovsky I. A. Assessment of the influence of temperature conditions on the natural ventilation of deep pits in the Arctic zone. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 218—227. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-218-227.

28. Gendler S. G., Prokhorova E. A. Assessment of the cumulative impact of occupational injuries and diseases on the state of labor protection in the coal industry. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 105—116. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_105.

29. Rudakov M. L., Duka N. E. Analysis of properties of deafeners to design personal ear protectors. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 165—180. [In Russ]. DOI: 10.2501 8/0236_1493_2022_3_0_165.

30. Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 40—56. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_40.

31. Moldovan D. V., Chernobay V. I., Sokolov S. T., Bazhenova A. V. Design concepts for explosion products locking in chamber. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 5—17. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_5.

32. Kolvakh K. A. Assessment and management of injury risk of personnel in case of rock failures in coal mines in Kuzbass. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 124—132. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_124.

33. Romanchenko S. B., Naganovsky Yu. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Journal of Mining Institute. 2021, vol. 252, pp. 927— 936. [In Russ]. DOI: 10.31897/PMI.2021.6.14.

34. Glebova E. V., Volokhina A. T., Vikhrov A. E. Assessment of the efficiency of occupational safety culture management in fuel and energy companies. Journal of Mining Institute. 2023, vol. 259, pp. 68—78. [In Russ]. DOI: 10.31897/PMI.2023.12.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.