Comparison of continuous analyzer indications with point assaying data of products at processing plants

Continuous analyzers of mass fractions of ore constituents and processing products differ in sensitivity and application ranges. Furthermore, they require calibration using regression equations, as a rule. It is shown that sensitivity and applicability of analyzers depend on masses of point samples and on peculiarities of sampled products. Micropoint sample analyzers are only usable in determination of large mass fractions of ore constituents. Surface sample analyzers possess limited applicability in the analysis of low-mass fractions but offer high sensitivity and applicability for high-grade ores. Bulk sample analyzers are applicable at all times. The comparison of indications of analyzers with the data of point cross-sectional sampling is ineffective in a general case for the asymmetry of mass fraction distributions in point samples and different dispersions result in the change of the angular coefficient of calibration. The uncertainty of ‘kicks’ in mass fractions leads to the continuous variation in calibrations and to the need of continual adjustment of a continuous analyzer. Stability is an attribute of average values of mass fractions both for analyzers and for point samples from cross-sectional sampling. These average values are to be used in calibration of analyzers.

Keywords: continuous analyzers, correct assaying, micropoint samples, surface samples, bulk samples, calibrations, average results, analyzer sensitivity, regression equations.
For citation:

KozinV.Z., KomlevA. S. Comparison of continuous analyzer indications with point assaying data of products at processing plants. MIAB. Mining Inf.Anal. Bull. 2025;(3):125-135. [In Russ]. DOI: 10.25018/0236_1493_2025_3_0_125.

Acknowledgements:

The study was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation No. 0833-2023-0004 in accordance with the state assignment for the Ural State Mining University.

Issue number: 3
Year: 2025
Page number: 125-135
ISBN: 0236-1493
UDK: 622.7.092
DOI: 10.25018/0236_1493_2025_3_0_125
Article receipt date: 16.07.2024
Date of review receipt: 26.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2025
About authors:

V.Z. Kozin1, Dr. Sci. (Eng.), Professor, Head of Chair, Dean of Mining and Mechanics Faculty, e-mail: gmf.dek@ursmu.ru, ORCID ID: 0000-0001-7184-919X,
A.S. Komlev1, Cand. Sci. (Eng.), e-mail: tails2002@inbox.ru, ORCID ID: 0000-0002-2484-2726,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

A.S. Komlev, e-mail: tails2002@inbox.ru.

Bibliography:

1. Kozin V. Z. Oprobovanie mineral'nogo syr'ya [Testing of mineral raw materials], Ekaterinburg, Izd-vo UGGU, 2011, 316 p.

2. Morozov V. V., Topchaev V. P., Ulitenko K. Ya., Ganbaatar V., Delgerbat L. Razrabotka i primenenie avtomatizirovannykh sistem upravleniya protsessami obogashcheniya poleznykh iskopaemykh [Development and application of automated control systems for mineral processing], Moscow, ID «Ruda i metally», 2013, 508 p.

3. Glazatov A. N., Molodtsev M. S., Kazakov A. M., Brazulis L. A. Improvement of the methodology and control system of balance products at the processing plant of JSC Kola MMC. Tsvetnye Metally. 2020, no. 12, pp. 88—93. [In Russ]. DOI: 10.17580/tsm.2020.12.13.

4. Varlamova S. A., Zatonsky A. V., Fedoseeva K. A. Investigation of the sensitivity to illumination of the method of glare recognition of potassium foam flotation machines. Obogashchenie Rud. 2021, no. 6, pp. 29—33. [In Russ]. DOI: 10.17580/or.2021.06.05.

5. Morozov V. V., Khurelchuluun I., Dalgerbat L. Control of crushing and screening processes using visiometric ore analysis. Tsvetnye Metally. 2021, no. 7, pp. 17—23. [In Russ]. DOI: 10.17580/ tsm.2021.07.01.

6. Morozov V. V., Stolyarov V. F., Konovalov N. M. Improving the efficiency of flotation management using in–line pulp composition analyzers. Obogashchenie Rud. 2003, no. 4, pp. 33—36. [In Russ].

7. Kudryavtsev V. Yu., Galass T. Yu., Stepanova I. S., Drobyshev A. A. Technical control as a tool to increase the competitiveness of the plant's products. Gornyi Zhurnal. 2022, no. 6, pp. 49—53. [In Russ]. DOI: 10.17580/gzh.2022.06.05.

8. Sokolov A. D., Demsky M. I. Industrial installation of the GAA «Au-isomer». Zolotodobicha. 2021, no. 12 (277), pp. 23—25. [In Russ].

9. Revenko A. G. Rentgenospektral'niy fluorestsentniy analiz prirodnykh materialov [X-ray spectral fluorescence analysis of natural materials], Novosibirsk, Nauka, 1994, 264 p.

10. Topchaev V. P., Fedin G. V. Systems and means of control and management of technological units in enrichment processes. Tsvetnye Metally. 2005, no. 10, pp. 77—79. [In Russ].

11. Ulitenko K. Ya. Some aspects of intelligent performance and quality management in iron ore processing. Obogashchenie Rud. 2006, no. 6, pp. 33—37. [In Russ].

12. Dominy S. C. Platten J. M. Glass H. J. Purevgerel S., Cuffley B. W. Determination of gold particle characteristics for sampling protocol optimisation. Minerals. 2021, vol. 11, pp. 1109—1155. DOI: 10.3390/min 11101109.

13. Szaloki I., Racz G., Germany A. Fundamental parameter model for quantification of total reflection X-Ray fluorescence analysis. Spectrochimica Acta Part B: Atomic Spectroscopy. 2019, vol. 156, pp. 33—41.

14. Kozin V. Z., Komlev A. S. On the use of the Richards-Chechott formula to determine the mass of a representative sample. Obogashchenie Rud. 2016, no. 3, с. 47—57. [In Russ]. DOI: 10.17580/ or.2016.03.08.

15. Dube J.-S., Esbensen K. H. Revisiting Pierre Gy’s formula (TOS) — A return to size-density classes for applications to contaminated soils, coated particular aggregated and mixed material systems. Analitica Chimica Acta. 2022, vol. 1193, no. 6, article 339227. DOI: 10.1016/j.aca.2021.339227.

16. Chong-Chong Qi Big data management in the mining industry. International Journal of Minerals, Metallurgy and Materials. 2020, vol. 27, no 2, pp. 131—139. DOI: 10.1007/s12613-019-1937-z.

17. Burdonov A. E., Novikov Yu. V., Lukyanov N. D. Application of the regression analysis apparatus for processing the results obtained during ore processing by the centrifugal concentration method. Tsvetnye Metally, no. 5. 2024, pp. 15—22. [In Russ]. DOI: 10.17580/tsm.2024.05.01.

18. Temerbekova B. M. Application of the methodology for identifying the systematic error of integral measurements of technological parameters in complex technological processes and industries. Tsvetnye Metally. 2022, no. 5, pp. 79—86. [In Russ]. DOI: 10.17580/tsm.2022.05.11.

19. Kozin V. Z., Komlev A. S. Metal balances at concentrating plants. Obogashchenie Rud. 2023, no. 2, pp. 9—16. [In Russ]. DOI: 10.17580/or.2023.02.02.

20. Galyanov A. V. Organization of calibration studies of means of continuous ore quality control on conveyor lines of processing plants. Geotekhnologicheskie problemy kompleksnogo osvoeniya nedr [Mining and technological problems of integrated development of mineral resources], Ekaterinburg, IGD URO RAN, 2003, pp. 125—143. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.