Improvement of centrifugal separation on the basis of pneumatic turbulization of separator cone wall layer

The use of centrifugal separators is widespread in the processing of ores and technogenic raw materials, which contain fine particles of noble metals with increased density. Centrifugal separators provide high separation rates of particles of different densities in the processing of minerals compared to other methods of processing. When using centrifugal separators in industry, it is not always possible to achieve the desired results in terms of the final products of centrifugal separation. Many parameters characteristic of centrifugal separators create problems in determining the optimum mode of operation of the apparatus. In addition, the high water consumption has a negative impact on the operating and environmental costs of material processing. This calls for a detailed study of the segregation of material in the nearwall layer of the centrifugal separator cone. In centrifugal separators, the use of compressed air to turbulence the boundary layer from inside the cone is different from the use of water. The use of air to turbulate the boundary layer decreases the resistance to the flow of mineral particles compared to water, which in turn leads to an increase in centrifugal separation. The use of compressed air for turbulization of the near wall layer of the separator cone allows to realize the circulation and accumulation technology of mineral and technogenic raw materials processing in order to increase the extraction of finely dispersed particles of high density.

Keywords: centrifugal separation, gravity concentration, technogenic raw materials, noble metals, high-density particles, closed cycle, circulation, turbulization of the near-wall layer.
For citation:

Penkov P. M., Morozov Yu. P., Khamidulin I. Kh. Improvement of centrifugal separation on the basis of pneumatic turbulization of separator cone wall layer. MIAB. Mining Inf. Anal. Bull. 2023;(12−1):120—133. [In Russ]. DOI: 10.25018/0236_1493_2023_121_0_120.

Issue number: 12
Year: 2023
Page number: 120-133
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2023_121_0_120
Article receipt date: 15.05.2023
Date of review receipt: 09.11.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

Penkov P. M., research engineer, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144, е-mail:, ORCID ID: 0000-0001-9531-1896;
Morozov Yu. P., Dr. Sci. (Eng.), Professor, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144, ORCID ID: 0000-0003-0554-5176, e-mail:; Khamidulin I. K., Associate Professor, PhD, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144, ORCID ID: 0000-0002-9018-2922.


For contacts:

Penkov P. M., е-mail:


1. Givemore Sakuhuni, N. Emre Altun, Bern Klein. Modelling of continuous centrifugal gravity concentrators using a hybrid optimization approach based on gold metallurgical data. Minerals Engineering. 2022, vol. 179(12), 107425. DOI: 10.1016/j.mineng.2022.107425.

2. Marion C., Langlois R.,Kökkılıç O., Zhou M.,Williams H.,Awais M.,Rowson N. A.,Waters K. E.Adesign of experiments investigation into the processing of fine low specific gravity minerals using a laboratory Knelson Concentrator. Minerals Engineering. 2019, vol. 135, pp. 139–155. DOI: 10.1016/j.mineng.2018.08.023.

3. Telkov S. A., Motovilov I. Y., Barmenshinova M. B., Daruesh G. S., Medyanik N. L. Substantiation of gravity concentration to the shalkiya deposit lead-zinc ore. Journal of Mining Science. 2019, vol. 55, no. 3, pp. 430–436. [In Russ].

4. Algebraistova N. K., Samorodskiy P. N., Kolotushkin D. M., Prokopyev I. V. Technology of gold recovery from gold-bearing technogenic raw materials. Obogashchenie Rud. 2018, no. 1(373), pp. 33–37. [In Russ]. DOI: 10.17580/or.2018.01.06.

5. Senchenko A. E., Fedotov K. V., Fedotov P. K., Burdonov A. E. Technological eval ua tion of ore processibility gravitational methods. Izvestiya Tula State University. Science of Earth. 2020, no. 4, pp. 262–280. [In Russ].

6. Surimbaev B. N., Kanaly E. S., Bolotova L. S., Shalgymbaev S. T. Assessment of Gravity Dressability of Gold Ore — GRG Test. Mining Science and Technology. 2020, vol. 5(2), pp. 92–103. [In Russ]. DOI: 10.17073/2500-0632-2020-2-92−103.

7. Penkov P. M., Morozov Y. P., Prokopyev S. A. Influence of viscosity resistance on the final velocles of stressed motion of particles. MIAB. Mining Inf. Anal. Bull. 2022, no. 11−1, pp. 119–126. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_119.

8. Toktar G., Kaumetova D. S., Koizhanova A. K. Study of gold-bearing ore bonification ability. National Geology. 2022, no. 6, pp. 86–94. [In Russ]. DOI: 10.47765/0869-71752022-10037.

9. Luchko M. S. Application of a centrifugal jigging machine for upgrading of gold-bearing materials at gold-processing plants. Bulletin of the Kuzbass State Technical University. 2022, no. 4 (152), pp. 67–75. [In Russ]. DOI: 10.26730/1999-4125-2022-4-67−75.

10. Usov G. A., Frolov S. G., Tarasov B. N. Developing the technology of extracting placer micron sized gold with the use of enclosing rock clay bond dispersion. News of the Higher Institutions. Mining Journal. 2019, no. 5, pp. 75–82. [In Russ]. DOI 10.21440/05361028-2019-5-75−82.

11. Pilov P. I., Kirnarsky A. S. Industrial use of single parameters as a tool to improve separation selectivity. Obogashchenie Rud. 2020, no. 2, pp. 21–28. [In Russ]. DOI: 10.17580/ or.2020.02.04.

12. Morozov Yu. P., Penkov P. M., Dmitriev V. T. Investigating the method of improving technological parameters of centrifugal separation with pneumatic turbulization. News of the Higher Institutions. Mining Journal. 2020, no. 4, pp. 62–69. [In Russ]. DOI: 10.21440/05361028-2020-4-62−69.

13. Konovalov V. E., Semyachkov A. I., Pochechun V. A. Actions for liquidation of negative influence of technogenic waters of the mining territory on environment. Modern problems of reservoirs and their watersheds: Proceedings of the VII All-Russian Scientific and Practical Conference with International Participation. Vol. II. Perm: Perm State National Research University. 2019, pp. 125–129. [In Russ]. DOI: 10.1088/1755−1315/321/1/012053.

14. Makarov A. B., Talalay A. G., Guman O. M., Khasanova G. G. Anthropogenic deposits and their impact on the natural environment. News of the Higher Institutions. Mining Journal. 2022, no. 3, pp. 120–129. [In Russ]. DOI: 10.21440/0536-1028-2022-3-120−129.

15. Lukanin A. V. Engineering Ecology: Protection of Lithosphere from Solid Industrial and Domestic Waste: Textbook Moscow, INFRA-M Publishing House. 2018, 556 р. [In Russ]. DOI: 10.12737/textbook_594ceae2a8e490.61608344.

16. Vorobyev M. A. Formation of the finely dispersed gas phase in upward and downward fluid flows. Fluid Dynamics. 2012, no. 4, pp. 75–81. [In Russ].

17. Isaev V. I. Emergency gas gushing through the liquid layer. World science almanac. 2015, no. 3−1(3), pp. 81–82. [In Russ].

18. Patent of the Russian Federation 2006132251/03, 08.09.2006. Kulikov Yu. V., Manukh D. G., Potemkin A. A., Senchenko A. E., Fedotov K. V. Method of centrifugal separation. 2008. Bulletin № 10. [In Russ].

19. Patent RF 2002126068/03, 02.10.2002 Rudnev B. P., Tarasov A. V., Enbaev I. A., Shamin A. A., Klishin D. А. Device for the extraction of noble metals. 2003. Bulletin № 16. [In Russ].

20. Morozov Y. P., Bekchurina E. A., Penkov P. M. Рeculiarities of pneumatic turbulization of the near-wall layer in a centrifugal separator. Scientific bases and practice of ore and technogenic raw materials processing: Proceedings of the XXVII International Scientific and Technical Conference held within the framework of the XX Ural Mining Decade, Ekaterinburg, April 07−08, 2022. Ekaterinburg, IP Russkikh A. V., 2022, pp. 8–12. [In Russ].

21. Ksenofontov B. S. Increased Efficiency of Jet Aeration in Flotation Treatment of Waste Water. Santehnika journal. 2020, no. 4, pp. 36–39. [In Russ].

22. Behzad Vaziri Hassas, Sabri Kouachi, Amir Eskanlou, The significance of positive and negative inertial forces in Particle-Bubble interaction and their role in the general flotation kinetics model. Minerals Engineering. 2021, vol. 170(1−4), 107006. DOI: 10.1016/j. mineng.2021.107006.

23. Varney Kromah, Powoe S. B., Khosravi R. Coarse particle separation by fluidizedbed flotation: A comprehensive review. Powder Technology. 2022, vol. 409(9), 117831. DOI: 10.1016/j.powtec.2022.117831.

24. Kondratyev S. A., Moshkin N. P. Particle–free air bubble interaction in liquid. Journal of Mining Science. 2020, vol 56, no. 6, pp. 990–999. [In Russ]. DOI 10.15372/ FTPRPI20200611.

25. Nikolaev A. A., Batkhuyag A., Goryachev B. E. Mineralization kinetics of air bubble in pyrite slurry under dynamic conditions. Journal of Mining Science. 2018, vol. 54, no. 5, pp. 840–844. [In Russ]. DOI: 10.15372/FTPRPI20180515.

26. Tarakanov A. G., Kudi A. N., Pronin V. A., Dolgunin V. N. Influence of flow parameters on the effects of particles separation in fast shear flow. Innovative Scientific Research. 2022, no. 10(22), pp. 14–24. [In Russ]. DOI: 10.5281/zenodo.7236471.

27. Bukhorov Sh. B., Kodirov H. I., Abdikamalova A. B., Eshmetov I. D. Importance of the flotation process, study of flotation reagents and mechanisms of their action on the surface of the phase section. Universum: Chemicals and Biology. 2020, no. 9(75), pp. 45–50. [In Russ].

28. Kondratyev S. A., Kovalenko K. A Determination of the dependence of the size of the floated particles on their properties and the hydrodynamics of the flotation chamber. Interexpo Geo-Siberia. 2021, vol. 2, no. 3, pp. 230–238. [In Russ]. DOI: 10.33764/2618−981X-2021-2-3-230−238.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.