Improvement of air sampling method to determine relative concentration of combustion gases in mine air

The currently applied methods of air sampling at the Upper Kama deposit of potassium–magnesium salts for the further chromatographic analysis are reviewed. In particular, the conventional (in glass jars), «dripping» (average daily sampler) and piston (plastic syringe) methods of mine air sampling are described. The article proposes a new approved method to sample mine air containing combustion gases for the subsequent transportation and analysis in a laboratory. The main idea of this method is using the piston effect of plastic injection syringes to be then employed as containers of air samples. The time of air storage inside plastic syringes without loss of data precision is determined. In particular, it is found that the error of relative concentration of methane as a consequence of methane leak from a syringe is no more than 5% by the 7th day of storage. Such error leads to an air demand error of 9 m3/min approximately, which is much less than the standard error of air flow rate meters employed in mines. Furthermore, over the same time period, hydrogen concentration in a syringe lowers by 50%. On average, the time from air sampling to the start of laboratory research takes no longer than one day; consequently, the concentrations of hydrogen and methane in a syringe decrease not more than by 5 and 2%, respectively. The research allows a conclusion to be drawn that the proposed method of air sampling is applicable subject to storage time not longer than one day. In case of the storage period from 2 to 7 days, the method is also applicable upon condition of introduction of an appropriate correction factor for gas concentration (methane or hydrogen).

Keywords: mine ventilation, relative gas concentration, sampling, sample bottle, average daily sampler, gas-and-air survey, operation zone, mine air, gas chromatograph, methane concentration.
For citation:

Isaevich A. G., Starikov A. N., Maltsev S. V. Improvement of air sampling method to determine relative concentration of combustion gases in mine air. MIAB. Mining Inf. Anal. Bull. 2021;(4):143-153. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_143.



The study was supported by the Ural Branch of the Russian Academy of Sciences, Project No. 18-5-5-5, and by the Basic Research Program, Research Issue No. 04222019-0145-C-01.

Issue number: 4
Year: 2021
Page number: 143-153
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2021_4_0_143
Article receipt date: 07.07.2020
Date of review receipt: 02.09.2020
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

A.G. Isaevich1, Cand. Sci. (Eng.), Head of Sector, Scopus ID: 56671263900, e-mail:,
A.N. Starikov1, Engineer, e-mail:,
S.V. Maltsev1, Engineer, e-mail:,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.


For contacts:

S.V. Maltsev, e-mail:


1. Dzhioeva A. K., Alborov G. T. The study of the composition of mine air. Nauchnyy al'manakh. 2015, no 12-2 (14), pp. 482—485. [In Russ].

2. Levin L.Yu., Isaevich A. I., Semin M. A., Gazizullin R. R. Dynamics of air-dust mixture in ventilation of blind drifts operating a team of cutter-loaders. Gornyi Zhurnal. 2015, no 1, pp. 72—75. [In Russ].

3. Cecala A. B., Timko R. J., Pritchard C. J. Controlled recirculation of section air in a Trona Mine. Proceedings of the 4th US Mine Ventilation Symposium; Berkeley, CA, USA, 1988, pp. 253—259.

4. Wang K., Jiang S., Ma X., Zhang W., Hu L., Wu Z., Shao H., Pei X., Wang Y. Abnormal gas emission in coal mines and a method for its dilution using ventilator control. Journal of Natural Gas Science and Engineering. 2016. No 33. Pp. 355—366.

5. Dziurzyński W., Pałka T., Wasilewski S. Modern methods of the assessment of gas hazards in the gob of longwalls with caving. Proceedings of the 16th North American Mine Ventilation Symposium; Colorado School of Mines Golden, Colorado USA. 2017. Pp. 6-9—6-16.

6. Oparina Yu.A. Features of the formation of the mine atmosphere in the mine workings of the potash mines of the Upper Kama region. Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatacii gornoshahtnogo i neftepromyslovogo oborudovaniya 2016, no 1, pp. 188—193. [In Russ].

7. Butuzov D. M. Component composition of free gases of salt rocks of the Verkhnekamsk potash deposit. Problemy razrabotki mestorozhdenij uglevodorodnyh i rudnyh poleznyh iskopaemyh. 2016, no 1, pp. 238—240. [In Russ].

8. Kolesov E. V., Shalimov A. V., Semin M.A. Development of the activities for explosive gases removal from the worked-out area in case of potash mine flooding. Bezopasnost' truda v promyshlennosti. 2019, no 12, pp. 60—65. DOI: 10.24000/0409-2961-2019-12-60-65.

9. Federal'nye normy i pravila v oblasti promyshlennoy bezopasnosti «Pravila bezopasnosti pri vedenii gornykh rabot i pererabotke tverdykh poleznykh iskopaemykh»: utv. Prikazom Rostekhnadzora ot 21.11.2018 № 599 [Federal norms and rules in the field of industrial safety «Safety rules in the conduct of mining operations and processing of solid minerals»: approved by the order of Rostekhnadzor of 21.11.2018 No. 599], 2020, 216 p. [In Russ].

10. Tekhnologicheskiy reglament po organizatsii provetrivaniya rudnikov PAO «Uralkalij» [Technological regulations on the organization of ventilation of mines of PJSC Uralkali]. Perm'Berezniki-Solikamsk, 2016. 124 p. [In Russ].

11. Spetsial'nye meropriyatiya po bezopasnomu vedeniyu gornykh rabot v usloviyakh «gazovogo rezhima» [Special measures for the safe conduct of mining operations in the «gas regime»]. Perm'-Berezniki, 2016. [In Russ].

12. Stupnikov I. A., Ivanov O. V. Analysis of the organization and methods of control over gas emissions during mining operations at the mine field of the Eurochem-Usolsky Potash Plant, LLC». Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatatsii gornoshakhtnogo i neftepromyslovogo oborudovaniya. 2018, vol. 1, pp. 190—194. [In Russ].

13. Namiot Yu.A. Rastvorimost' gazov v vode: spravochnoe posobie [Solubility of gases in water: a reference guide], Moscow, Nedra, 1991, 167 p.

14. Skochinskiy A. A., Komarov V. B. Rudnichnaya ventilyatsiya [Mine ventilation], Moscow, Ugletekhizdat, 1949. 443 p.

15. Sobolik S. R., Hadgu T., Rechard R. P., Gaithe K. N. A risk assessment tool for gas migration interactions between wellbores and potash mines in SE new Mexico. Mechanical Behavior of Salt VII-Proceedings of the 7th Conference on the Mechanical Behavior of Salt. 2012. Pp. 263—273.

16. Besnard K., Pokryszka Z. Gases emission monitoring in a post-mining context. Symposium Post mining. 2005. P.N.C.

17. Valoski M. P. Instruments for gas analysis at mine fires/explosions. SME Annual Meeting. 2010. Pp. 10—039.

18. Laptev V. N., Isaevich A. G., Norina N. V., Yuzhanin A. S., Dudina E. N., Kovin K. A., Mal'tsev S. V., Trushkova N. A., Gazizullin R. R., Starikov A. N. Patent RU 157165. 30.10.15.

19. Gluyas J., Thompson L., Allen D., Benton C., Chadwick P., Clark S., Klinger J., Kudryavtsev V., Lincoln D., Maunder B., Mitchell C., Nolan S., Paling S., Spooner N., Staykov L., Telfer S., Woodward D., Coleman M. Passive, continuous monitoring of carbon dioxide geostorage using muon tomography. Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences. 2019. Vol. 377. No 2137. Article 20180059.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.