Improving valuation of ecosphere pollution from mining waste using mathematical tools

The article reports studies into mining-induced pollution of the ecosphere using mathematical tools. The studies were carried out within the influence zone of the nature-andtechnology system generated in the course of activity of the recently closed project, namely, Khrustalny Mining-and-Processing Plant in the Far Eastern Federal District of Russia. Heavy induced pollution of the environment is conditioned by tin ore production and accumulation of huge quantity of processing waste in Vysokogorskoe tailings storage, which is the subject of the present research, in volume of more than 1 Mt inside the area of 17 ha withdrawn from wooded lands. The relevant literature review discloses poor study of the problem connected with geoecological evaluation of the environmental impact of a manmade system using the mathematical modeling. In this connection, the present study is aimed to evaluate induced pollution of the ecosphere within the influence zone of a nature-and-technology system to abate the environmental impact using mathematical tools. The envelopes and flows of pollutants spread by the mechanisms of natural migration results in the induced pollution of ecosystems, including soil, and in the living space degradation. High concentrations of total compounds of heavy metals, which exceed the background contents and the maximal allowable concentrations by 3 to a few hundred times, are identified in soil within the influence zone of the tailings storage. It is proved that the extreme difficulty of soil and the insufficient study of mechanisms of many processes running in soil impede the analysis of propagation mechanisms of pollutants. Therefore, for the study region, an abstract problem is formulated and solved on accumulation of toxic elements in soil cover, both in soluble and insoluble forms, using mathematical tools. The studies into transfer and accumulation of pollutants using mathematical tools show that concentration of the pollutants in soil is variable and directly depends on time. The calculations make it possible to state that reduction in, for example, Zn concentrations down to MAC values in the study region can take place 20 years after the pollutants penetrate soil.

Keywords: induced pollution, air basin, manmade system, mathematical modeling, tailings storage, processing waste, pollutants.
For citation:

Kolobanov K. A., Filatova M. Yu., Bubnova M. B., Romashkina E. A. Improving valuation of ecosphere pollution from mining waste using mathematical tools. MIAB. Mining Inf. Anal. Bull. 2021;(4):85-99. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_85.


The study was carried out under the state contract between the Ministry of Education and Science of the Russian Federation and the Pacific National University, Science Project Code 0818-2020-0004.

Issue number: 4
Year: 2021
Page number: 85-99
ISBN: 0236-1493
UDK: 504.064.36
DOI: 10.25018/0236_1493_2021_4_0_85
Article receipt date: 30.01.2020
Date of review receipt: 23.10.2020
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

K.A. Kolobanov1,2, Graduate Student, Junior Researcher, e-mail:,
M.Yu. Filatova1,2, Leading Engineer, Junior Researcher,
M.B. Bubnova, Cand. Sci. (Eng.), Senior Researcher, Mining Institute, Far Eastern Branch of Russian Academy of Sciences, 680000, Khabarovsk, Russia,
E.A. Romashkina1, Cand. Sci. (Biol.), Assistant Professor,
1 Pacific National University, 680035, Khabarovsk, Russia,
2 Far East Forestry Research Institute, 680020, Khabarovsk, Russia.


For contacts:

K.A. Kolobanov, e-mail:


1. Oparin V. N., Potapov V. P., Giniyatullina O. L., Bykov A. A., Schastlivtsev E. L. Integrated monitoring of induced air pollution in mining regions. Journal of Mining Science. 2017. Vol. 53. No 5. Pp. 945—953. DOI: 10.1134/S1062739117052982.

2. Krupskaya L. T., Zvereva V. P., Leonenko A. V. Features of environmental monitoring of changes in environmental objects in the process of gold mining. Materialy IX Mezinarodni Vedecko-Prakticka Conference «Moderni Vymozenosti Vedy–2013». 2013. Pp. 67—76.

3. Zvereva V. P., Kostina A. M., Koval' O. V. Technogenic mineral formation as an indicator of the ecological state of tin ore regions of the Far East. Gornyi Zhurnal. 2009, no 4, pp. 41—43. [In Russ].

4. Krupskaya L. T., Melkonyan R. G., Zvereva V. P., Rastanina N. K., Golubev D. A., Filatova M. Yu. Ecological hazard of accumulated mining waste and recommendations on risk reduction in the Far Eastern Federal District. MIAB. Mining Inf. Anal. Bull. 2018, no 12, pp. 102— 112. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-102-112.

5. Bubnova M. B., Ozaryan Y.A. Integrated assessment of the environmental impact of mining. Journal of Mining Science. 2016. Vol. 52. No 2. Pp. 401—409.

6. Purtova L. N., Kostenkov N. M., Verkholat V. P. Soil and plant monitoring on the technogenic landscapes of Primorye (on the example of reclaimed sections of coal mines). Fundamental'nyye issledovaniya. 2013, no 11, pp. 108—114. [In Russ].

7. Krupskaya L. T., Melkonyan R. G., Mayorova L. P., Golubev D. A. Ecological rehabilitation of territories affected by accumulated environmental damage (tailings) as a result of past economic activities of former mining enterprises in the Far Eastern Federal District (FEFD). MIAB. Mining Inf. Anal. Bull. 2017, no 4, pp. 5—15. [In Russ].

8. Mesyats S. P., Ostapenko S. P. Methodological approach to monitoring the restoration of disturbed lands of the mining industry according to satellite observations. Russian Mining Industry. 2018, no 6 (142), pp. 72—75. [In Russ]. DOI: 10.30686/1609-9192-2018-6-142-72-75.

9. Lipina L. N., Bubnova M. B., Usikov V. I. The use of remote sensing of the earth to assess the geoecological situation in the mining regions of the Far Eastern region. MIAB. Mining Inf. Anal. Bull. 2017, no S23, pp. 517—524. [In Russ].

10. Usikov V. I., Lipina L. N., Bubnova M. B., Ozaryan Yu. A. Patent RU 2019620201, 31.01.2019.

11. Idrees M., Jan F.A., Ara A., Gulab H. Analysis and human health risk from selected heavy metals in water, sediments and freshwater fish (Labeo rohita, Cyprinus carpio, Glyptothorax punjabensis) collected from three rivers in district Charsadda, Khyber-Pakhtunkhwa, Pakistan.Carpathian Journal of Earth and Environmental Sciences. 2017. Vol. 12. No 2. Pp. 641—648.

12. Zhe Zhu, Junxue Zhang, Zhiqiang Yang, Aljaddani A. H., Cohen W. B., Shi Qiu, Congliang Zhou Continuous monitoring of land disturbance based on Landsat time series. Remote Sensing of Environment. 2020, Vol. 238. Article 111116. DOI: 10.1016/j.rse.2019.03.009.

13. Gomez-Sagasti M. T., Alkorta I., Becerril J. M., Epelde L., Anza M., Garbisu C. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut. 2012. Vol. 223. Pp. 3249—3262. DOI: 10.1007/s11270-012-1106-8.

14. Bhargava A., Srivastava A., Mukherjee R. On a mathematical model involving I-function for studying the effect of environmental pollution. Proceedings of the National Academy of Sciences, India. Section A: Physical Sciences. 2017. Vol. 87. No 1. Pp. 19—21. DOI: 10.1007/ s40010-016-0319-4.

15. Ardejani F. D., Shokri B. J., Moradzadeh A., Soleimani E., Jafar M. A. A combined mathematical geophysical model for prediction of pyrite oxidation and pollutant leaching associated with a coal washing waste dump. International Journal of Environmental Science and Technology. 2008. Vol. 5. No 4. Pp. 517—526.

16. Hatje V., R. M. A. Pedreira, de Rezende C. E., Augusto C., Schettini F., de Souza G. C., Marin D. C., Hackspacher P. C. The environmental impacts of one of the largest tailing dam failures worldwide. Scientific reports. 2017, Vol. 7. Article 10706. DOI: 10.1038/s41598-01711143-x.

17. Liu R., Liu J., Zhang Z., Borthwick A., Zhang K. Accidental water pollution risk analysis of mine tailings ponds in Guanting Reservoir Watershed, Zhangjiakou City, China. International Journal of Environmental Research and Public Health. 2015. Vol. 12. No 12. Pp. 15269—15284. DOI: 10.3390/ijerph121214983.

18. Phillips J. Applying a mathematical model of sustainability to the Rapid Impact Assessment Matrix evaluation of the coal mining tailings dumps in the Jiului Valley, Romania. Resources, Conservation and Recycling. 2012. Vol. 63. Pp. 17—25. DOI: 10.1016/j.resconrec.2012.03.003.

19. Trubetskoy K. N. Solving the problems of environmentally balanced development of deposits by open geotechnologies. Gornyi Zhurnal. 2018, no 6, pp. 71—76. [In Russ].

20. Kachurin N. M., Stas' G. V., Kalayeva S. Z. K., Korchagina T. V. Geoecological assessment of the effectiveness of environmental protection and environmental protection measures in underground coal mining. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2016, no 3, pp. 63—81. [In Russ].

21. Krupskaya L. T., Zvereva V. P., Panfilov O. O. Estimation of environment pollution in zone of tailing dump influence in the south Far East of Russia and necessity of monitoring organization. WIT Transactions on Engineering Sciences. 2014. Vol. 88. Pp. 499—504.

22. Gula K. E., Korneeva N. I., Krupskaya L. T., Zvereva V. P., Golubev D. A., Pavlichenko A. V. Mathematical models of additional purification of sewage (in a form of pulp) on heavy metals using hydrophytes. Russian Journal of General Chemistry. 2015. Vol. 85. No 13. Pp. 2942—2944.

23. Khanam A. Phytoremediation. A green bio-engineering technology for cleanup the environmental contaminants. International Journal of Recent Scientific Research. 2016. Vol. 7. Pp. 9925—9928. DOI: 10.1134/S1070363215130113.

24. Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal. 2015. Article ID 756120. 18 p.

25. Wolejko E., Wydro U., Loboda T. The ways to increase efficiency of soil bioremediation. Ecological Chemistry and Engineering. 2016. Vol. 23. Pp. 155. DOI: 10.1515/eces-2016-0011.

26. Sharov P. O. Zagryaznenie svintsom pos. Rudnaya Pristan' i ego vliyanie na zdorov'e detey [Lead pollution Ore Quay and its impact on children's health]. Vladivostok, Dal'nauka, 2005, 132 p.

27. Gifford F. Use of Routine meteorological observations for estimating atmospheric dispersion. Nuclear Safety. 1961. Vol. 2. No 4. Pp. 47—51.

28. Majorova L. P., Krupskaya L. T., Cherentsova A. A., Filatova M. Yu. Assessment of the environmental situation within the limits of the influence of tailings dumps in the Dalnegorsky district of Primorsky Krai. Ekologicheskaya khimiya. 2018. Vol. 27, no 6, pp. 317—327. [In Russ].

29. Kumpiene J., Desogus P., Schulenburg S., Arenella M., Renella G., Brдnnvall E., Lagerkvist A., Andreas L., Sjцblom R. Utilisation of chemically stabilized arsenic-contaminated soil in a land fill cover. Environmental Science and Pollution Research. 2013. Vol. 20. No 12. Pp. 8649—8662. DOI: 10.1007/s11356-013-1818-3.

30. Shrivastava A., Ghosh D., Dash A., Bose S. Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Current Pollution Reports. 2015. Vol. 1. No 1. Pp. 35—46. DOI: 10.1007/s40726-015-0004-2.

31. Rastanina N. K., Krupskaya L. T., Golubev D. A., Cherentsova A. A. Evaluation of health risk due to pollution with waste of the abandoned Khrustalnensky Mining and Processing Plant. MIAB. Mining Inf. Anal. Bull. 2017, no 12, pp. 88—95. [In Russ]. DOI: 10.25018/0236-14932017-12-0-88-95.

32. Ivanov G. I. Osobennosti pochvoobrazovaniya na yuge Dal'nego Vostoka [Features of soil formation in the south of the Far East], Novosibirsk, 1973, 45 p.

33. Kachor O. L. Razrabotka nauchno-prakticheskikh osnov likvidatsii nakoplennogo ekologicheskogo ushcherba ot mysh'yakovistykh otkhodov gorno-pererabatyvayushchey promyshlennosti [Development of scientific and practical principles for the elimination of accumulated environmental damage from arsenic waste from the mining industry], Doctor’s thesis, Irkutsk: IRNITU, 2019, 407 p.

34. Kachor O. L. Development of a model for the migration of arsenic along the soil profile from accumulated waste from the mining industry. Izvestiya Sibirskogo otdeleniya Sektsii nauk o Zemle Rossiyskoy akademii yestestvennykh nauk. Geologiya, razvedka i razrabotka mestorozhdeniy poleznykh iskopayemykh. 2019, vol. 42, no 2, pp. 144—150. [In Russ].

35. Ilin V. B., Syso A. I., Baidina N. L., Konarbaeva G. A., Cherevko A. S. Background concentrations of heavy metals in soils of southern western Siberia. Eurasian Soil Science. 2003. Vol. 36. No 5. Pp. 494—500.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.