Improvement of flotation efficiency on the basis of additional pulp aeration by spring-type diffusors

Currently, one of the main tasks in the field of flotation enrichment of minerals is to improve the technology of raw material processing in order to increase the extraction of valuable components. One of the promising directions of technology improvement is the use of additional aeration of pulp with fine air bubbles. At additional saturation of pulp with fine air bubbles the probability of meeting of mineral particles with air bubbles, fixation of particles of flotation particles on bubbles and formation of more durable flotation complexes increases. The presence of fine air bubbles in the flotation slurry contributes to the realization of coalescent mechanism of connection of small loaded bubbles with large transport air bubbles. In order to saturate the pulp with finely dispersed air, various methods of pulp aeration have been considered: mechanical dispersion of air, dispersion by passing air through porous partitions, separation of gases from solutions at pressure drops, obtaining bubbles of electrolytic gases. On the basis of advantages and disadvantages of the considered methods of additional aeration of pulp, air dispersersers made of porous fluoroplastic and foamed polypropylene and spring air dispersers are accepted for research and tested. When the liquid phase is aerated with spring dispersants, higher dispersion of air by fine bubbles is observed. Industrial tests when using additional aeration of pulp with fine air bubbles by spring dispersants established the possibility of increasing copper recovery in copper concentrate in the range from 0.21 to 1.3%. In general, the use of spring air dispersants as additional aeration of flotation slurry is recommended for use.

Keywords: flotation, flotation machine, slurry, aeration, air dispersion, fine air bubbles, air bubble coarseness, coalescent mechanism, dispersant air.
For citation:

Morozov Yu. P., Uporova I. V., Mamonov R. S. Improvement of flotation efficiency on the basis of additional pulp aeration by spring-type diffusors. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):258-269. [In Russ]. DOI: 10.25018/0236_1493_2024_121_0_258.

Acknowledgements:
Issue number: 12
Year: 2024
Page number: 258-269
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2024_121_0_258
Article receipt date: 16.07.2024
Date of review receipt: 05.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

Yu.P. Morozov1, Dr. Sci. (Eng.), Professor, Professor, е-mail: tails2002@inbox.ru, ORCID ID: 0000-0003-0554-5176,
I.V. Uporova1, Engineer-Researcher, е-mail: uporova2013@mail.ru,
R.S. Mamonov1, Engineer-Researcher, е-mail: Mamonoff_npa@mail.ru, ORCID ID: 0000-0002-9371-1762,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

I.V. Uporova, e-mail: e-mail: uporova2013@mail.ru.

Bibliography:

1. Rozhnov V. E. Research of the dispersing process in mechanical flotation machines. Minerals and Mining Engineering. 1969, no. 3, pp. 30—34. [In Russ].

2. Oleksik К., Saramak D., MŁynarczykowska A. Evaluation of flotation process course on the example of sulphide ores. E3S Web of Conferences. 2017, vol. 18, article 01006. DOI: 10.1051/e3sconf/20171801006.

3. Schubert H., Bischofberger J. On the optimization of hydrodynamics in flotation processes. Proceedings of the 13th International Mineral Processing Congress. Warszawa, 1979, no. 2, pp. 1261— 1287.

4. Bedran N. G., Nester A. F. Study of the influence of the size of air bubbles on the efficiency of flotation of coal particles of different size. Obogashchenie poleznykh iskopaemykh. 1970, no. 6, pp. 51—56. [In Russ].

5. Orlov S. L., Balakin M. G., Vlasov I. A. Development of microbubble technology for extraction of copper, zinc and gold from flotation tailings of the Uzelginskoye ore deposit. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya. Materialy XXVIII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Scientific bases and practice of processing of ores and technogenic raw materials: Materials of the XXVIII International Scientific and Technical Conference], Ekaterinburg, 2023, pp. 417—419. [In Russ].

6. Wenyun H., Honglu Y., Wenchao H., Bin Z., Xujian L. On the influences of air bubbles on water flow in a two-dimensional channel. Mathematical Problems in Engineering. 2021, vol. 1, pp. 1—15. DOI: 10.1155/2021/6818673.

7. Samygin V. D. Mineralization kinetics of air bubbles taking into account particle detachment and floating time of aggregates. Izvestiya. Non-Ferrous Metallurgy. 2016, no. 3, pp. 4—11. [In Russ].

8. Boncescu C., Robescu L. D. Study of air bubble dynamics in an air column using CFD. E3S Web of Conferences. 2019, vol. 85, article 02010. DOI: 10.1051/e3sconf/20198502010.

9. Tsave P. K., Kostoglou M., Karapantsios T. D., Lazaridis N. K. A hybrid device for enhancing flotation of fine particles by combining micro-bubbles with conventional bubbles. Minerals. 2021, vol. 11, no. 6, article 561. DOI: 10.3390/min11060561.

10. Orlov S. L., Balakin M. G., Vlasov I. Effect of microbubbles on flotation beneficiation process. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya. Materialy XXVIII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Scientific bases and practice of processing of ores and technоgenic raw materials: Materials of the XXVIII International Scientific and Technical Conference], Ekaterinburg, 2023, pp. 256—258. [In Russ].

11. Wang J., Wang L., Cheng H., Runge K. A comprehensive review on aeration methods used in flotation machines: Classification, mechanisms and technical perspectives. Journal of Cleaner Production. 2024, vol. 435, article 140335. DOI: 10.1016/j.jclepro.2023.140335.

12. Alfarraj B. A., Alkhedhair A. M., Al-Harbi A. A., Nowak W., Alfaleh S. A. Measurement of the air bubble size and velocity from micro air bubble generation (MBG) in diesel using optical methods. Energy Transitions. 2020, vol. 4, pp. 155—162. DOI: 10.1007/s41825-020-00030-1.

13. Etchepare R., Oliveira H., Nicknig M., Azevedo A., Rubio J. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Minerals Engineering. 2017, vol. 112, pp. 19—26. DOI: 10.1016/j.mineng.2017.06.020.

14. Abramov, A. A. Theoretical bases for creation of innovative flotation technologies. Part 1. Theoretical foundations of modern flotation. Tsvetnye Metally. 2013, no. 2(842), pp. 41—45. [In Russ].

15. Kuznecov A. N. Main types of liquid and gas flow measurement instruments. Sovremennoe konkurentnoe razvitie ekonomiki i obshchestva: Materialy III mezhdunarodnoy nauchno-prakticheskoy konferentsii [Modern competitive development of economy and society: Proceedings of the III International Scientific and Practical Conference], Saratov, 2017, pp. 109—111. [In Russ].

16. Vilkova N. G., Mishina S. I., Kireeva Yu. I., Kireeva Y. O. Capillary pressure in foams stabilized by solid particles. Aktual'nye problemy nauki i praktiki v razlichnykh otraslyakh narodnogo khozyaystva: Sbornik dokladov VI Natsional'noy nauchno-prakticheskoy konferentsii [Actual problems of science and practice in various branches of national economy: Collection of reports of the VI National Scientific and Practical Conference], Penza, 2023, pp. 4—8. [In Russ].

17. Moraru E., Dontu O., Baran N., Petre A., Moga I. C. Experimental researches on the depollution of wastewater by forced oxygenation and ozonation. Revista de Chimie. 2020, vol. 71, no. 9, pp. 202—209. DOI: 10.37358/rc.20.9.8330.

18. Uporova I. V., Penkov P. M., Mamonov R. S. Assessment of pulp aeration in flotation machines. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya. Materialy XXIX Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Scientific bases and practice of processing of ores and technogenic raw materials: materials of the XXIХ International Scientific and Technical Conference], Ekaterinburg, 2024, pp. 211—214. [In Russ].

19. Varyuhina I. M. Flotation method of enrichment of apatite-nepheline ores using steam-air mixing. Liga molodykh uchenykh. Sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsii [League of Young Scientists. Collection of Articles of the International Scientific and Practical Conference], Penza, Nauka i Prosveshchenie, 2023, pp. 69—72. [In Russ].

20. Pronin I. Yu., Abdullin T. I. Electrical methods of wastewater treatment electroflotation. Sovremennye tekhnologii v neftegazovom dele — 2024. Sbornik trudov mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Modern technologies in oil and gas business — 2024. Proceedings of the international scientific and technical conference], Ufa, 2024, pp. 724—727. [In Russ].

21. Nazari S., Hassanzadeh А., Khoshdast Н., He Y. Recent developments in generation, detection and application of nanobubbles in flotation. Minerals. 2022, vol. 12, no. 4, article 462. DOI: 10.3390/ min12040462.

22. Chanturiya V. A., Vidgergauz V. E. Elektrokhimiya sul'fidov. Teoriya i praktika flotatsii [Electrochemistry of sulfides. Theory and practice of flotation], Moscow, Ruda i metally, 2008, 272 p.

23. Morozov Yu. P., Uporova I. V., Koltunov A. V. Optimization of the particle size distribution of air bubbles in slurry with spring air dispersants. Nauchnye osnovy i praktika pererabotki rud i tekhnogen-nogo syr'ya. Materialy XXVIII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Scientific bases and practice of processing of ores and technogenic raw materials: materials of the XXVIII International Scientific and Technical Conference], Ekaterinburg, 2023, pp. 148—153. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.