Bibliography: 1. Mirzekhanov G. S., Litvincev V. S. The state and problems of the development of manmade deposits of precious metals in the Far East region. Gornyi Zhurnal. 2018, no. 10, pp. 25— 30. [In Russ]. DOI: 10.17580/gzh.2018.10.04.
2. Neronsky G. I., Borodavkin S. I. Method of assessing the contents of gold in scatterings with its dominant small and thin secretions. Zolotodobycha. 2012, no. 158. [In Russ].
3. Krupskaya L. T., Mamaev Yu. A., Khrunina N. P., Litvintsev V. S., Ponomarchuk G. P. Ekologicheskie osnovy ratsional'nogo zemlepol'zovaniya pri osvoenii rossypnykh mestorozhdeniy Dal'nego Vostoka [Environmental foundations of rational land use in the development of the deposits of the Far East], Vladivostok; Khabarovsk, 1997, 76 p.
4. Aleksandrova T. N., Lipina L. N., Krupskaja L. T. Assessment of the impact of natural mining systems in mining environmental gold Wednesday. MIAB. Mining Inf. Anal. Bull. 2010, no. 6, pp. 286—292. [In Russ].
5. Khrunina N. P., Mamaev Yu. A., Stratechuk O. V., Khrunin T. O. Patent RU 2187373. 20.08.2002. [In Russ].
6. Jiaping Wu, Junyu He, Christakos George Quantitative Analysis and Modeling of Earth and Environmental Data. Elsevier, 2020. 420 p.
7. Rukovich A. V., Rochev V. F. Disintegration of frozen clay rocks under the influence of chemical fields and the aquatic environment. Advances in current natural sciences. 2017, no. 5, pp. 123—127. [In Russ].
8. Atici U., Comakli R. Evaluation of the physico-mechanical properties of plutonic rocks based on texture coefficient by. Journal of the Southern African Institute of Mining and Metallurgy. 2019, vol. 119, no. 1, pp. 63—69.
9. Jianhua Chen, Zhenghe Xu, Ye Chen Electronic structure and surfaces of sulphide minerals. Elsevier, 2020, 418 p.
10. Laplante A. R. A standardized test to determine gravity recoverable gold. Available at: http://knelsonrussian.xplorex.com/sites/knelsongravity/files/reports/report21s.pdf [accessed 16.06.2021].
11. Skvarcov L. S., Varshavskiy V. Ya., Dubrovin A. V., Serdyuk B. P. Cavitation generator for selective disintegration of minerals. V kongress obogatiteley stran SNG: sbornik materialov [V kongress obogatiteley stran SNG: sbornik materialov], vol. 2, Moscow, Al'teks, 2005, pp. 19—21. [In Russ].
12. Rochev V. F. Issledovanie mekhanizma i razrabotka metodov intensifikatsii protsessa razrusheniya merzlykh peschano-glinistykh porod v vodnoy srede [The research of the mechanism and the development of methods to intensify the process of destruction of frozen sand and clay rocks in aquatic environment], Candidate’s thesis, Neryungri, 2002.
13. Mankov V. M., Serzhanin P. V. Development and testing of the method and apparatus for effective disintegration and classification of bouldered clay ores and sands. Zolotodobycha. 2019, no. 11(240), pp. 18—20. [In Russ].
14. Larionov V. R., Fedorov F. M., Matveev A. I., Nechaev P. B., Larionov A. S. Technology of separate enrichment of deeply buried scatterings of gold of the river B. Kuranakh. MIAB. Mining Inf. Anal. Bull. 2012, no. 8, pp. 184—189. [In Russ].
15. Myazin V. P., Shesternev D. M., Shumilova L. V. Creating a new resource-saving technologies of gold extraction from hard and it is difficult to retrieve minerals man-made clay deposits. Mining sciences: fundamental and applied issues. 2018, vol. 5, no. 2, pp. 103—107. [In Russ].
16. Mamaev Yu. A., Кhrunina N. P. Determining the optimal initial parameters of sound impact on the pulp in the zoomf-accumulator during the open development of highglinous scatterings. MIAB. Mining Inf. Anal. Bull. 2009, no. 7, pp. 187—191. [In Russ].