Improvement of frother separation mode in processing of supergene alteration-worn diamond-bearing kimberlite

An efficient trend of reduction in loss of fine diamonds extracted from kimberlite is improvement of frother separation mode, in particular, selection of temperature and reagent mode for main process flows. An important factor of this technology efficiency is the water phase composition, which is critical in the conditions of closed water circulation. The thermodynamic calculations and physicochemical research determined the causes of the decrease in the frother separation efficiency with water circulation, namely, hydrophilization of diamond surfaces by carbonate and silica films and subsequent attachment of slime fines to them, as well as the decreased intensity of reagents in water phase in case of its high mineralization. The thermodynamic modeling defined conditions of disintegration of hydrophilic films and recovery of natural hydrophobic behavior of diamonds. The temperature mode is selected for thermal treatment, conditioning of ore feedstock with a collector and the frother separation itself, which ensures maximal recovery of diamonds in concentrate at high selectivity of the process. It is proposed to use compound collectors with black oil fuel F-5 and diesel technology fraction which preserve their properties in heavily mineralized media. Moreover, it is suggested to use dispersants of barren rocks and kimberlite slimes which are unprecitable by calcium ions. The developed mode was tested on a pilot automated plant of frother separation and demonstrated the decrease in the loss of diamonds by 9.8–10.7%.

Keywords: diamonds, frother separation, hydrophilic behavior, oil receptivity, conditioning, closed water circulation, compound collectors, depressants.
For citation:

Morozov V. V., Kovalenko E. G., Dvoichenkova G. P., Polivanskaya V. V. Improvement of frother separation mode in processing of supergene alteration-worn diamondbearing kimberlite. MIAB. Mining Inf. Anal. Bull. 2024;(1):5-19. [In Russ]. DOI: 10.25018/ 0236_1493_2024_1_0_5.

Issue number: 1
Year: 2024
Page number: 5-19
ISBN: 0236-1493
UDK: 622.765.4
DOI: 10.25018/0236_1493_2024_1_0_5
Article receipt date: 17.10.2023
Date of review receipt: 11.11.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

V.V. Morozov1, Dr. Sci. (Eng.), Professor, Professor, e-mail:, ORCID ID: 0000-0003-4105-944X,
E.G. Kovalenko, Cand. Sci. (Eng.), Chief Engineer, «Yakutniproalmaz» Institute of the ALROSA JSC, Republic of Sakha (Yakutia), 678174, Mirny, Russia, e-mail:, ORCID ID: 0000-0002-0320-0839,
G.P. Dvoichenkova, Dr. Sci. (Eng.), Leading Researcher, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia;
Mirny Polytechnic Institute (branch) of North-Eastern Federal University, 678174, Mirny, Russia, e-mail:, ORCID ID: 0000-0003-3637-7929,
V.V. Polivanskaya1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-1973-0914,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

V.V. Morozov, e-mail:


1. Verkhoturov M. V., Amelin S. A., Konnova N. I. Diamond enrichment. International Journal of Experimental Education. 2012, no. 2, pp. 61. [In Russ].

2. Chanturiya V. A. Innovation-based processes of integrated and high-level processing of natural and technogenic minerals in Russia. Proceedings of the 29th International Mineral Processing Congress. Moscow, 2019, pp. 3—12.

3. Zlobin M. Technology of coarse-grained flotation in the enrichment of diamond-bearing ores. Gornyi Zhurnal. 2011, no. 1, pp. 87—89. [In Russ].

4. Zhang J., Kuznetsov D., Yub M. Improving the separation of diamond from vein minerals. Minerals Engineering. 2012, vol. 36-38, no. 6, pp. 168—171. DOI: 10.1016/j.mineng.2012.03.015168171.

5. Morozov V. V., Dvoichenkova G. P., Kovalenko E. G., Timofeev A. S., Kuryanov M. V. Justification of water circulation closing in froth flotation cycle of diamond-bearing kimberlites by mathematical modeling. MIAB. Mining Inf. Anal. Bull. 2022, no. 12, pp. 5—19. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_5.

6. Verkhoturova V. A., Elshin I. V., Nemarov A. A., Tolstoy M. Yu., Ostrovskaya G. H. Scientific substantiation and selection of the optimal option for restoring the hydrophobic properties of the surface of diamonds from the ore of the tube «International». Proceedings of Irkutsk State Technical University. 2014, no. 8(91), pp. 50—56. [In Russ].

7. Morozov V. V., Kovalenko E. G., Dvoichenkova G. P., Slightly V. A. The choice of temperature modes of conditioning and flotation of diamond-containing kimberlites by compound collectors. Mining Science and Technology (Russia). 2022, vol. 7, no. 4, pp. 287—297. [In Russ]. DOI: 10.17073/2500-0632-2022-10-23.

8. Dvoichenkova G. P., Kovalenko E. G., Timofeev A. S., Podkamennyi Yu. A. Enhanced efficiency of diamond foam separation after complex removal of hydrophilic slime coats from diamond surface. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 20—38. [In Russ]. DOI: 10. 25018/0236_1493_2022_10_0_20.

9. Pestryak I. V. Modeling and analysis of physicochemical processes in recirculating water conditioning. Journal of Mining Science. 2015, vol. 51, no. 4, pp. 811—818. DOI: 10.1134/ S1062739115040189.

10. Vilasó-Cadre J., Nolasco-Cuenca M., Ávila-Márquez D., Arada-Pérez A., GutiérrezCastañed E., Reyes-Domínguez I., Blanco-Flores A. Evaluation of the statistical reliability of micro-flotation experiments using a hallimond flotation cell. Canadian Metallurgical Quarterly. 2022. DOI: 10.1080/00084433.2022.2160899.

11. Mahoney J., Monroe C., Swartley А. М. Surface analysis using X-ray photoelectron spectroscopy. Spectroscopy Letters. 2020, vol. 53, no. 10, pp. 726—736. DOI: 10.1080/00387010.2020.1824197.

12. El-Azazy M., El-Shafie A. S., Al-Saad K. Introductory chapter. Infrared Spectroscopy — Principles and Applications, 2023, 220 p. DOI: 10.5772/intechopen.109139.

13. Huhtamaki T., Tian X., Korhonen Y., Robin R. Determination of the wetting characteristics of the surface by measuring the wetting angle. Nature Protocols. 2018, vol. 13, pp. 1521— 1538. DOI: 10.1038/s41596-018-0047-0.

14. Batushkin A. N., Baichenko A. A. Assessment of the collective properties of apolar reagents in the apparatus of non-emergency flotation. Bulletin of the Kuzbass State Technical University. 2005, no. 6(51), pp. 73—75. [In Russ].

15. Alikina Yu. A. Kalashnikova T. A., Golubeva O. Yu. Sorption capacity of kaolinite group aluminosilicates of various morphologies. Glass Physics and Chemistry. 2021, vol. 47, no. 1, pp. 56—64. [In Russ].

16. Zinchuk N. N. On the features of studies of postmagmatic and hypergenic changes of kimberlite rocks. Otechestvennaya Geologiya. 2021, no. 5, pp. 26—42. [In Russ]. DOI: 10.47765/ 0869-7175-2021-10026.

17. Hero A. O., Fleury G. Pareto-optimal methods of gene ranking: Genomic signal processing. Journal of VLSI Signal Processing. 2004, vol. 38, no. 3, pp. 259—275. DOI: 10.1023/B:

18. Engel T., Reid P. Physical chemistry: Thermodynamics, statistical thermodynamics, and kinetics. 2020, 682 p.

19. Voigt M., Marieni C., Clark D., Gislason S., Oelkers E. Evaluation and refinement of thermodynamic databases for mineral carbonation. Energy Procedia. 2018, vol. 146, pp. 81—91. DOI: 10.1016/j.egypro.2018.07.012.

20. Lunevich L. Aqueous silica and silica polymerisation. Desalination — Challenges and Opportunities. 2019. DOI: 10.5772/intechopen.84824.

21. Baltakis K., Yauberti R., Siautsiunas R., Kaminskas R. The effect of SiO2 modification on the formation of calcium silicate hydrate. Materials Science-Poland. 2007, vol. 25, no. 3, pp. 663—670.

22. Morozov V. V., Pestryak I. V., Kovalenko E. G., Lezova S. P., Polivanskaya V. V. Stimulation of frother separation of diamonds by optimizing collecting agent composition and temperature conditions. MIAB. Mining Inf. Anal. Bull. 2022, no. 8, pp. 135—147. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_135.

23. Deryagin B. V., Churaev N. V., Muller V. M. Poverkhnostnye sily [Surface forces], Moscow, Nauka, 1985, 398 p.

24. Tkach N. S., Amyokhina A. V., Slepenchuk A. A., Eskin A. A. The effect of electrolyte concentration on the efficiency of flotation extraction. Research Journal of International Studies. 2013, no. 6(13), pp. 56—60. [In Russ].

25. Wang B., Yunjun Peng Yu The effect of salt water on mineral flotation is a critical review. Mineral Development. 2014, vol. 66, pp. 13—24. DOI: 10.1016/j.mineng.2014.04.017.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.