Schemes of enrichment of ilmenite-titanomagnetite and hematite-magnetite ores

Schemes of enrichment of ilmenite-titanomagnetite and hematite-magnetite ores have been researched. The mineral composition and physical properties of weakly magnetic ore and waste minerals ilmenite-titanomagnetite and hematite-magnetite ores show that the magnetic properties of ilmenite and hematite and most waste minerals do not differ significantly. Therefore, using a single magnetic method, it is difficult to obtain an ilmenite or hematite concentrate. For the enrichment of these types of ores, combined schemes should be used using magnetic, gravitational, electrical or flotation methods of enrichment. To improve the technological parameters of enrichment of ilmenite-titanomagnetite and hematite-magnetite ores, fine screening is also used. Performed laboratory research have shown that the number of enrichment methods used to obtain ilmenite or hematite concentrate depends on the ratio of ore and waste minerals in the ore. When enriching magnetite-hematite ore with a high content of hematite and a low content of weakly magnetic waste minerals, only high-gradient magnetic separation can be used to obtain a hematite concentrate. To obtain ilmenite or hematite concentrate from ilmenite-titanomagnetite and hematite-magnetite ores containing a high amount of weakly magnetic waste minerals, a scheme with two or three enrichment methods should be used. With a low content of a weakly magnetic ore mineral in the initial product and a high amount of weakly magnetic rock minerals, three or four enrichment methods must be used to obtain the concentrate.

Keywords: Ilmenite, hematite, minerals, magnetic separation, gravity separation, electric separation, fine screening, grinding.
For citation:

Pelevin А. Е., Shigaeva V. N., Vodovozov K. A. Schemes of enrichment of ilmenitetitanomagnetite and hematite-magnetite ores. MIAB. Mining Inf. Anal. Bull. 2023;(12-1):106—119. [In Russ]. DOI: 10.25018/0236_1493_2023_121_0_106.

Issue number: 12
Year: 2023
Page number: 106-119
ISBN: 0236-1493
UDK: 622.778
DOI: 10.25018/0236_1493_2023_121_0_106
Article receipt date: 15.05.2023
Date of review receipt: 07.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

Pelevin A. E., Dr. Sci. (Eng.), Associate Professor, Professor of the Department of Mineral Processing at the Ural State Mining University. Ural State Mining University, 620144, 30, Kuibyshev st., Ekaterinburg, Russia;
Shigaeva V. N., Researcher, JSC «Uralmekhanobr», 620144, 87, Khokhryakova street, Ekaterinburg, Russia;
Vodovozov K. A., Senior lecturer of the Department of Mineral Processing at the Ural State Mining University. Ural State Mining University, 620144, 30, Kuibyshev st., Ekaterinburg, Russia.


For contacts:

Pelevin A. E., е-mail:


1. Liamas-Bueno M., López-Valdivieso A., Corona-Arroyo M. A. On the mechanisms of silica (SiO2) re-covery in magnetite ore low-magnetic-drum concentration. Mining, Metallurgy & Exploration. 2019, vol. 36, рр. 131–138. DOI: 10.1007/s42461-018-0019-5.

2. Senchenko A. E., Kulikov Y. V., Tokarenko A. V. In-process testing — A framework for the effective production modernization at Lebedinsky GOK. Gornyi Zhurnal. 2022, no. 6, pp. 59–67. [In Russ]. DOI: 10.17580/gzh.2022.06.07.

3. Rocha G. M., da Cruz M. V. M., Lima N. P., Lima Rosa. Reverse cationic flotation of iron ore by amide-amine: bench studies. Journal of Materials Research and Technology. 2022, vol. 18, pp. 223–230. DOI: 10.1016/j.jmrt.2022.02.039.

4. Moraes M. N., Galery R., Mazzinghy D. B. A review of process models for wet fine classification with high frequency screens. Powder Technology. 2021, vol. 394, pp. 525–532. DOI: 10.1016/j.powtec.2021.08.078.

5. Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. MIAB. Mining Inf. Anal. Bull. 2022, no. 5, pp. 154–166. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_154.

6. Kosoj G. M., Vinnikov A. Ya. Fine hydraulic screening of ground ores on a multifrequency screen by kroosh technologies: In-process testing. Tsvetnye Metally. 2021, no. 6, pp. 10–15. [In Russ]. DOI: 10.17580/tsm.2021.06.01.

7. Nikolaeva N. V., Aleksandrova T. N., Afanasova A., Chanturiya E. L. Mineral and technological features of magnetite-hematite ores and their influence on the choice of processing technology. ACS Omega. 2021, vol. 6, no. 13. рр. 9077–9085. DOI: 10.1021/ acsomega.1c00129.

8. Liu P. P, Liang J., Zhou M. F., Chen W. T. Micro-textures and chemical compositions of metamorphic magnetite and ilmenite: Insights from the Mianhuadi mafic complex in SW China. Journal of Asian Earth Sciences. 2020, vol. 192, 104264. DOI: 10.1016/j. jseaes.2020.104264.

9. Nienaber E. C., Auret L. Experimental modelling and plant simulation of spiral concentrators: Comparing response surface methodology and extended Holland-Batt models. Minerals Engineering. 2019, vol. 141, 105833. DOI: 10.1016/j.mineng.2019.105833.

10. Yan X., Wang H., Peng Z., Hao J., Zhang G., Xie W., He Y. Triboelectric properties of ilmenite and quartz minerals and investigation of triboelectric separation of ilmenite ore. International Journal of Mining Science and Technology. 2018, vol. 28, iss. 2, pp. 223–230. DOI: 10.1016/j.ijmst.2018.01.003.

11. Urvantsev A. I., Shikhov N. V., Zaitsev G. V. Research results and practice of mineral raw material beneficiation by electric separation. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2005, no. 5, pp. 37–51. [In Russ].

12. Rocha G. M., de Assis Silva J., da Silva Ramos K., Lima R. Selective Flotation of Quartz from Hematite by Amide-Amine: Fundamental Studies. Mining Metallurgy & Exploration. 2021, vol. 38. pp. 2195–2207. DOI: 10.1007/s42461-021-00470-3.

13. Safari M., Hoseinian F. S., Deglon D., Leal Filho L. S., Souza Pinto T. C. Investigation of the reverse flotation of iron ore in three different flotation cells: Mechanical, oscillating grid and pneumatic. Minerals Engineering. 2020, vol, 150, 106283. DOI: 10.1016/j. mineng.2020.106283.

14. Zhao X., Meng Q., Zhang Y., Yuan Z., Xu Y., Li L. Surface adsorption investigation of dodecylbenzenesulfonate isopropanolamine a novel collector during flotation separation of ilmenite from titanaugite. Minerals Engineering. 2022, vol. 180, 107499. DOI: 10.1016/j. mineng.2022.107499.

15. Cai J., Deng J., Yang H., Tong L., Wu D., Wen S., Liu Z., Zhang Y. A novel activation for ilmenite using potassium permanganate and its effect on flotation response. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020, vol. 604, 125323. DOI: 10.1016/j.colsurfa.2020.125323.

16. Pelevin A. E. Production of hematite concentrate from hematite–magnetite ore. MIAB. Mining Inf. Anal. Bull. 2020, no. 3−1, pp. 422–430. [In Russ]. DOI: 10.25018/0236-14932020-31−0-422−430.

17. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021, vol. 21, pp. 4–8. DOI: 10.17580/cisisr.2021.01.01.

18. Shen S., Yuan Z., Liu J., Meng Q., Hao H. Preconcentration of ultrafine ilmenite ore using a superconducting magnetic separator. Powder Technology. 2020, vol. 360, pp. 1–9. DOI: 10.1016/j.powtec.2019.09.074.

19. Tripathy S. K., Singh V., Murthy Y. R., Banerjee P. K., Suresh N. Influence of process parameters of dry high intensity magnetic separators on separation of hematite // International Journal of Mineral Processing. 2017, vol. 160, pp. 16–31. DOI: 10.1016/j. minpro.2017.01.007.

20. Pelevin A. E., Shigaeva V. N. The potential of obtaining ilmenite concentrate from titanomagnetite ore tailings. Obogashchenie Rud. 2022, no. 2, рр. 46–52. [In Russ]. DOI: 10.17580/or.2022.02.08.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.