Improvement of the method registration electromagnetic radiation preceded to rock failure

In-situ electromagnetic radiation signals are recorded in the vicinity of faulting zones in enclosing rock mass around roadways in Kirov S. M. coalmine of «SUEK-Kuzbass» using stationary instrumentation, in real time and with data transfer to a surface server. The developed instrumentation made it possible to record variations in the signal amplitude spectrum in the range to 1.0 MHz. The EMR signals associated with dynamic fracturing are specifically pronounced against the general background. Parameters of a signal preceding discontinuity in coal and host rocks are determined. In the zones of softening and fracture of rocks, the number of single high-energy signals jumps, and their amplitudes exceed the overall background level by more than 5 times. It is shown that prior to rock failure, alongside with an increase in the EMR amplitude, a high-frequency component appears in the signal spectrum, which enables more exact detection of failure initiation. Within the package developed for predicting hazardous gas-dynamic events definable using the method of electromagnetic emission, the identification criterion of hazardous zones by the signal amplitude, frequency and their combination is implemented.

Keywords: mine working, electromagnetic emission, recording, stationary instrumentation, rock failure, cracking, crushing, overburden pressure, pressure-induced dynamic events, stressstrain state, electromagnetic radiation, in-situ research.
For citation:

Meshkov А. А., Ledyaev N. V., Khamutsky А. А., Savchenko А. V., Bizyaev А. А. Improvement of the method registration electromagnetic radiation preceded to rock failure. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):135—148. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_135.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 135-148
ISBN: 0236-1493
UDK: 622.83
DOI: 10.25018/0236_1493_2022_62_0_135
Article receipt date: 14.01.2022
Date of review receipt: 15.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Meshkov А. А., General Director, SUEK — Kuzbass JSC, 652507, Kemerovo Region — Kuzbass, Leninsk-Kuznetskiy, st. Vasilyeva, 1, Russia;
Ledyaev N. V., Deputy Technical Director of Industrial Emergency Tolerance — Head of the Department of Industrial Emergency Tolerance, SUEK — Kuzbass JSC, 652507, Kemerovo Region — Kuzbass, Leninsk-Kuznetskiy, st. Vasilyeva, 1, Russia;
Khamutsky А. А., deputy chief mechanic — project manager for intelligent systems, SUEK — Kuzbass JSC, 652507, Kemerovo Region — Kuzbass, Leninsk-Kuznetskiy, st. Vasilyeva, 1, Russia;
Savchenko А. V., Cand. Sci. (Eng.), http://orcid.org/0000-0001-8458-1487, Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, 630091, Novosibirsk, Krasny Prospekt, 54, Russia, e-mail: sav@eml.ru;
Bizyaev А. А., Engineer, http://orcid.org/ 0000-0002-0659-9267, Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, 630091, Novosibirsk, Krasny Prospekt, 54, Russia, e-mail: bizyaev@ngs.ru.

 

For contacts:

Savchenko А. V., e-mail: sav@eml.ru.

Bibliography:

1. Batugin A. S. On the role of tectonophysical studies in the assessment of industrial and geoecological safety of coal field development. MIAB. Mining Inf. Anal. Bull. 2021, no. 2—1, pp. 241–250. [In Russ]. DOI: 10.25018/0236-1493-2021-21−0-241−250.

2. Kurlenya M. V., Tsupov M. N., Savchenko A. V. Influence of the Bachatsky Earthquake on Methane Emission in Roadways in Coalmines. Journal of Mining Science. 2019, vol. 55, no. 5, pp. 695—700. DOI:10.1134/S1062739119056051.

3. Shemyakin E. I., Kurlenya M. V., Kulakov G. I. On the issue of rock burst classification. Journal of Mining Science. 1986, no. 5, pp. 3—11. [In Russ].

4. Kuksenko V. S., Inzhevatkin I. E., Manzhikov B. C. Physical and methodological foundations of rock burst forecasting. Journal of Mining Science. 1987, no. 1, pp. 9—22. [In Russ].

5. Pamukcu S. and Cheng L. Underground Sensing. Monitoring and Hazard Detection for Environment and Infrastructure. Elsevier. Academic Press. 2017, 522 p.

6. Song D., Wang E., He X., Jia H., Qiu L., Chen P. and Wang S. Use of Electromagnetic Radiation from Fractures for Mining-Induced Stress Field Assessment. Journal of Geophysics and Engineering. 2018, vol. 15, no. 4, pp. 1093—1103. DOI: 10.1088/1742−2140/aaa26d.

7. Rabinovitch A., Frid V., Bahat D. Directionality of Electromagnetic Radiation from Fractures. International Journal of Fracture. 2017, vol. 204, no. 2, pp. 239—244. DOI:10.1007/s10704-016-0178-7.

8. Song D., Wang E., Song X., Jin P., Qiu L. Changes in Frequency of Electromagnetic Radiation from Loaded Coal Rock. Rock Mechanics and Rock Engineering. 2016, vol. 49, no 1, pp. 291—302. DOI: 10.1007/s00603-015-0738-6.

9. Song X., Li X., Li Z., Zhang Z., Cheng F., Chen P., Liu Y. Study on the Characteristics of Coal Rock Electromagnetic Radiation (EMR) and the Main Influencing Factors. Journal of Applied Geophysics. 2018, vol. 148, pp. 216—225. DOI: 10.1016/j.jappgeo.2017.11.018.

10. Yakovlev D. V., Muljov S. N. Experience in the use of multifunctional geophysical equipment Angel-M in the coal and ore industry. Ugol Publ, 2014, no. 10, pp.14—19. [In Russ].

11. Bizyaev A. A., Voronkina N. M., Savchenko A. V., Tsupov M. N. Method for noncontact determination of dangerously loaded zones in a mine working. Ugol Publ, 2019, no. 11 (1124), pp. 27—31. DOI: 10.18796/0041-5790-2019-11−27−31 [In Russ].

12. Yakovitskaya G. E. Methods and technical means for diagnosing critical states of rocks based on electromagnetic emission. Novosibirsk, “Parallel”, 2008. 315 p. [In Russ].

13. Yakovitskaya G. E. Prediction of dynamic manifestations of a rock mass based on the registration of electromagnetic radiation signals. Physical problems of rock destruction In proc. of the third Int. Sci. Conf. Novosibirsk, Nauka, 2003, pp.98—103. [In Russ].

14. Bizyaev A. A., Vostretsov A. G., Yakovitskaya G. E. Registration and diagnostic complex RDK REMI-3 and experimental studies of the destruction of rocks in the conditions of underground mine workings of the Tashtagol deposit. Reports of the Academy of Sciences of Higher Education of the Russian Federation. 2015, vol. 3, no. 28, pp. 29—38. [In Russ].

15. Qiu L., Wang E., Song D., Liu Zh., Shen R., Lv G. and Xu Zh. Measurement of the stress field of a tunnel through its rock EMR. J. Geophys. Eng. 2017, vol. 14, no. 4, pp. 949—973. DOI: 10.1016/j.jappgeo.2017.11.018.

16. Li D., Wang E., Li Zh., Jia H., Wang D., Kong X., Wang X., Wang X. and Ali M. A causal mechanism for anomalous electromagnetic radiations from coal and rock failure. Geophysics. 2018, vol. 83, no. 6, pp. E423—E434. DOI: 10.1190/geo2018−0360.1.

17. Li Ch., Sun X., Wang Ch., Xu X., Xie B. and Li J. The correlated characteristics of micro-seismic and electromagnetic radiation signals on a deep blasting workface. J. Geophys. Eng. 2016, vol. 13, no. 6, pp. 1020—1035. DOI: 10.1088/1742−2132/13/6/1020.

18. Wang E., He X., Liu X., Li Zh., Wang Ch. and Xiao D. A non-contact mine pressure evaluation method by electromagnetic radiation. J. Appl. Geophys. 2011, vol. 75, no. 2, pp. 338—344. DOI: 10.1016/j.jappgeo.2011.06.028.

19. Song D., Wang E., He X., Jia H., Qiu L., Chen P. and Wang S. Use of electromagnetic radiation from fractures for mining-induced stress field assessment. J. Geophys. Eng. 2018, vol. 15, no. 4, pp. 1093—1103. DOI: 10.1088/1742−2140/aaa26d.

20. Li Zh., Niu Y., Wang E., Liu L., Wang H., Wang M. and Ali M. Experimental Study on Electric Potential Response Characteristics of Gas-Bearing Coal During Deformation and Fracturing Process. Processes. 2019, vol. 7, no. 2, pp. 72—103. DOI: 10.3390/pr7020072.

21. Frid V. Calculation of Electromagnetic Radiation Criterion for Rockburst Hazard Forecast in Coal Mines. Pure Appl. Geophys. 2001, vol. 158, no. 5, pp. 931—944. DOI: 10.1007/PL00001214.

22. Di Y., Wang E. Electromagnetic radiation interference signal recognition in coal rock mining based on recurrent neural networks. Geophysics. 2021, vol. 86, no. 4, pp. K1—K10. DOI: 10.1190/geo2020−0726.1.

23. Hu S., Wang E., Liu X. Spatiotemporal multifractal characteristics of electromagnetic radiation in response to deep coal rock bursts. Nat. Hazards Earth Syst. Sci. 2014, vol. 14, no. 8, pp. 2089—2103. DOI: 10.5194/nhess-14−2089−2014.

24. Song X., Li X., Li Zh., Zhang Zh., Cheng F., Chen P. and Liu Y. Study on the characteristics of coal rock electromagnetic radiation (EMR) and the main influencing factors. J. Appl. Geophys. 2018, vol. 148, pp. 216—225. DOI: 10.1016/j.jappgeo.2017.11.018.

25. Li X., Wang E., Li Zh., Liu Zh., Song D. and Qiu L. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods. Rock Mech. Rock Eng. 2016, vol. 49, no. 11, pp. 4393—4406. DOI: 10.1007/s00603-016-1037-6.

26. Frid V. Electromagnetic radiation method water-infusion control in rockburstprone strata. J. Appl. Geophys. 2000, vol. 43, no. 1, pp. 5—13. DOI: 10.1016/ S0926−9851(99)00029−4.

27. Liu X., Zhang Zh., Wang E., Wang X., Yang B. and Wang H. Characteristics of electromagnetic radiation signal of coal and rock under uniaxial compression and its field application. J. Earth Syst. Sci. 2019, vol. 129, no. 1, pp. 34−1—34−11. DOI: 10.1007/ s12040-019-1309-0.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.