Improvement of beneficiation technology for the Eleninka deposit ore

The article addresses the problem connected with the end product quality at Novokaolinovy GOK. The chemistry and physicochemical properties of ore are studied. Initial ore contains much iron and titanium, which affects the final product quality adversely. The influence of hydrocycloning and wet magnetic separation on processing efficiency is examined. The grain size composition of ore samples was analyzed first. From the screen analysis results of natural samples from the Eleninka deposit, it is seen that the particles mostly have the size of 0.04+0.02 mm. The lab-scale hydrocycloning data of kaolin clay prove the sufficient efficiency of this method as it enables separation of a sand fraction larger than 0.04 mm. The hydrocyclone outlet was subjected to wet magnetic separation to improve the end product quality. The results show that the coloring pigment—iron oxide—is either ingrained in emulsion or is in the crystal lattice. The analysis of chemistry, grain size composition and whiteness of Eleninka ore samples after hydrocycloning proves producibility of standard-quality beneficiated kaolin. The article gives recommendations on improvement of processing flow charts for the Eleninka deposit ore to produce higher quality white kaolin in case of using the non-selective mining technology.

Keywords: kaolin, Eleninka deposit, beneficiation, grain size analysis, magnetic separation, sizing, hydrocyclone, whiteness.
For citation:

Grishin I. A., Shavakyleva O. P., Fadeeva N. V., Velikanov V. S. Improvement of beneficiation technology for the Eleninka deposit ore. MIAB. Mining Inf. Anal. Bull. 2022;(6):156-166. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_156.


The study was supported by the Ministry of Science and Higher Education of the Russian Federation, Project No. FZRU-2020-0011.

Issue number: 6
Year: 2022
Page number: 156-166
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2022_6_0_156
Article receipt date: 14.03.2022
Date of review receipt: 21.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

I.A. Grishin1, Cand. Sci. (Eng.), Assistant Professor, Head of Chair, e-mail:, ORCID ID: 0000-0001-8010-7542,
O.P. Shavakyleva1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0001-6291-2687,
N.V. Fadeeva1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0001-9291-9927,
V.S. Velikanov, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail:, Ural Federal University, 620002, Ekaterinburg, Russia, ORCID ID: 0000-0001-5581-2733,
1 G.I. Nosov Magnitogorsk State Technical University, 455000, Magnitogorsk, Russia


For contacts:

V.S. Velikanov, e-mail:, I.A. Grishin, e-mail:



1. Solodkiy N. F., Shamrikov A. S. Raw materials and ways to increase the efficiency of the production of construction ceramics. Glass and ceramics. 2009, no. 1, pp. 26—27. [In Russ].

2. Normatov I., Kamolov E. В. Development of an algorithm for optimizing the technological process of kaolin enrichment. IEEE International IOT. Electronics and Mechatronics Conference (IEMTRONICS). 2020, article 9216371.

3. Hojamberdiev M. I. Alliance kaolin — a new silicate raw material. Part 2: Enrichment methods. InterCeram: International Ceramic Review. 2005, vol. 54, no. 5, pp. 312—315.

4. Wang N., Gu H., Wen H., Liu S. Enrichment of niobium and titanium from kaolin using an acid–alkali leaching process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2018, vol. 49, no. 6, pp. 3552—3558. DOI 10.1007/s11663-018-1405-6.

5. Klopotova N. G., Sidorina N. G., Borodina M. G. Study of clays of the Siberian region to create composites based on them. Bulletin of Medical Science. 2020, no. 2(18), pp. 18—21. [In Russ].

6. Tauler E., Xu J., Campeny M. A new kaolin deposit in Western Africa: Mineralogical and compositional features of kaolinite from Caluquembe (Angola). Clays and Clay Minerals. 2019, vol. 67, no. 3, pp. 228—243. DOI 10.1007/s42860-019-00021-4.

7. Eminov A. A. Development composition of the refractory mass on the basis of the composition «quartzite-quartz sand-kaolinite clay». East European Scientific Journal. 2017, no. 3-2(19), pp. 86—89.

8. Maslennikova G. N., Kolyshkina N. V., Shamrikov A. S., Stafeeva Z. V. Enriched kaolin of Zhuravliniy Log deposit for ceramic production. Glass and ceramics. 2002, no. 1, pp. 15—19. [In Russ].

9. Solodkiy N. F., Solodkaya M. N., Shamrikov A. S. The raw material base of the ceramic and refractory industry of the Urals. Sovremennoe sostoyanie i perspektivy ispol'zovaniya syr'evoy bazy CHelyabinskoy oblasti. Sbornik nauchnykh statey [The current state and prospects of using the raw material base, Chelyabinsk region. Collection of scientific articles], Chelyabinsk, 2000, pp. 106—107. [In Russ].

10. Shamrikov A. S. Tekhnologiya obogashcheniya i stabilizatsii keramicheskikh svoystv kaolinov mestorozhdeniya «Zhuravlinyy Log» [Technology of enrichment and stabilization of ceramic properties of kaolins of Zhuravliniy Log deposit], Candidate’s thesis, Yuzhnoural'sk, 2002, 222 p.

11. Sedelnikova G. V., Rogozhin A. A., Lygina T. Z., Levchenko E. N. Modern technologies for processing mineral raw materials, ensuring the completeness and complexity of the development of TPI deposits. Prospect and protection of mineral resources. 2013, no. 4, pp. 62—67. [In Russ].

12. Yankova T. Mineral processing waste utilization. 20th International Multidisciplinary Scientific GeoConference SGEM 2020. Albena, Bulgaria, 2020, vol. 20, pp. 821—828. DOI: 10.5593/sgem2020/1.1/s04.100.

13. Sitnova M. Review of the kaolin market in the CIS. MIAB. Mining Inf. Anal. Bull. 2007, no. 10, pp. 375—380. [In Russ].

14. Kovzalenko V. A., Sarsenbay G., Sadykov M. K., Imangalieva L. M. Kaolin — sub-alumina raw material. Complex Use of Mineral Resources. 2015, no. 3(294), pp. 32—37. [In Russ].

15. Osipova K. G, Osipov G. N. Some Features of risk management in the mining industry. Korporativnaya ekonomika. 2018, no. 4(16), pp. 28—40.

16. Grishin I. A. A way to improve the quality of refractory clays. Sovremennye dostizheniya universitetskikh nauchnykh shkol: Sbornik dokladov natsional'noy nauchnoy shkoly-konferentsii [Modern achievements of university scientific schools: Collection of reports of the National scientific school-conference], Magnitogorsk, MGTU im. G.I. Nosova, 2019, pp. 173—175. [In Russ].

17. Arsentiev V. A., Gerasimov A. M., Mezenin A. O. Research of technology of kaolin enrichment using hydrothermal modification. Obogashchenie Rud. 2017, no. 2(368), pp. 3—9. [In Russ].

18. Galyamov V. Sh., Grishin I. A. Development of technology for complex processing of alumina-containing raw materials. MIAB. Mining Inf. Anal. Bull. 2014, no. S2-4, pp. 3—10. [In Russ].

19. Galyamov V. Sh., Grishin I. A., Chizhevsky V. B. The use of combined enrichment technologies to reduce dumping during the development of deposits of non-metallic minerals. MIAB. Mining Inf. Anal. Bull. 2014, no. S2-4, pp. 32—43. [In Russ].

20. Galyamov V. Sh. On the issue of expanding the raw material base of kaolin raw materials. IX Kongress obogatiteley stran SNG. Sbornik materialov. T. II [IX Congress of concentrators of the CIS countries. Collection of materials, vol. II], Moscow, MISiS, 2013, pp. 699—701. [In Russ].

21. Grishin I. A., Galyamov V. Sh. Development of technology of de-ironing of alumina raw materials. Aktual'nye problemy sovremennoy nauki, tekhniki i obrazovaniya: materialy 69-y nauchno-tekhnicheskoy konferentsii. T. 1 [Actual problems of modern science, technology and education: materials of the 69th scientific and technical conference, vol. I], Magnitogorsk, MGTU im. G.I. Nosova, 2011, pp. 18—21. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.