Current condition of acid sulfate water of the Karabash geotechnogenesis system

The mining and processing industry makes a substantiation contribution in generation and alteration of chemical composition of the environmental components. One of the least inert systems to the anthropogenic load are the aquatic systems. In the area of the Karabash geotechnogenesis system, the long-term impact exerted on water ecosystems by aerogenic gas and dust flows, and by surface water flows from ash disposal areas and tailings ponds formed the sulfate-type hydrological regime alien to water flows in the area. During this research, water was sampled from the main water bodies in the area of the Karabash geotechnogenesis system in the summer and winter periods. In the samples, the cationic–anionic composition, acidity and electrical conductivity of water were determined. The water bodies with the most changed chemical composition of water as compared with the background water flows in the test area are identified in the course of the analysis. The Piper diagrams and Kurlov’s formulas reveal considerable changes in cationic and anionic compositions per seasons. In the winter period, from the moment of isolation of watertable by an ice layer, amount of sulfate-anions reduces, which confirms the influence exerted by rainfalls and surface flows on the chemical composition of water. The research findings can help improve the current measures adopted to improve ecological situation in the area of Karabash town, and can promote revision and adjustment of the regional hydrochemical background.

Keywords: technogenesis, river hydrochemistry, sulfate water regime, pollution, acid water, cationic and anionic composition, Karabash industrial cluster, aquatic systems.
For citation:

Shabanov M. V., Marichev M. S., Burachevskaya M. V., Kirichkov M. V., Tsitsuashvili V. S. Current condition of acid sulfate water of the Karabash geotechnogenesis system. MIAB. Mining Inf. Anal. Bull. 2025;(3):108-124. [In Russ]. DOI: 10.25018/0236_1493_ 2025_3_0_108.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 23-24-00646 in Southern Federal University.

Issue number: 3
Year: 2025
Page number: 108-124
ISBN: 0236-1493
UDK: 554/556/504.4.054
DOI: 10.25018/0236_1493_2025_3_0_108
Article receipt date: 20.10.2024
Date of review receipt: 25.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2025
About authors:

M.V. Shabanov1, Cand. Sci. (Agr.), Assistant Professor, Assistant Professor, e-mail: geohim.spb@gmail.com, Scopus Author ID: 35171489500, ORCID ID: 0000-0003-4725-3673,
M.S. Marichev1, Cand. Sci. (Biol.), Head of Laboratory, e-mail: m.s.marichev@yandex.ru, Scopus Author ID: 57216298057, ORCID ID: 0000-0003-0429-2234,
M.V. Burachevskaya2, Cand. Sci. (Biol.), Leading Researcher, e-mail: marina.0911@mail.ru, Ivanovsky Academy of Biology and Biotechnology, Scopus Author ID: 55656700000, ORCID ID: 0000-0002-0533-0418,
M.V. Kirichkov2, Cand. Sci. (Phys. Mathem.), Junior Researcher, Research Institute of Physics, e-mail: ihomeer@gmail.com, Scopus Author ID: 57200126460,
V.S. Tsitsuashvili2, Junior Researcher, Research Institute of Physics, e-mail: viktoria447@yandex.ru, Scopus Author ID: 57192911478, ORCID ID: 0000-0002-0113-7549,
1 Saint-Petersburg State Agrarian University, 196607, Pushkin, Russia,
2 Southern Federal University, 344090, Rostov-on-Don, Russia.

 

For contacts:

M.S. Marichev, e-mail: m.s.marichev@yandex.ru.

Bibliography:

1. Rybnikova L. S., Rybnikov P. A., Navolokina V. Yu. Chemical elements migration in ground waters of mining territory. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2024, vol. 335, no. 9, pp. 137—147. [In Russ]. DOI: 10.18799/24131830/2024/9/4465.

2. Zhao X., Tang L., Zhang Sh., Wang J., Czech B., Oleszczuk P., Minkina T., Gao Ya Formation and biotoxicity of environmentally persistent free radicals in steelworks soil under thermal treatment. Journal of Hazardous Materials. 2024, vol. 467, article 133697. DOI: 10.1016/j.jhazmat.2024.133697.

3. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Comprehensive assessment of geoecological risks in conducting open and underground mining. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 205—216. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-205-216.

4. Shabanov M. V., Marichev M. S. Arsenic accumulation in spolic technosols in the area of a large copper smelting plant in the Middle Urals. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2024, vol. 335, no. 6, pp. 123—134. [In Russ]. DOI: 10.18799/24131830/2024/6/4357.

5. Shabanov M. V., Marichev M. S., Minkina T. M., Mandzhieva S. S., Nevidomskaya D. G. Inflow of heavy metals to depositional environments at Karabash geotechnical system. MIAB. Mining Inf. Anal. Bull. 2024, no. 5, pp. 117—132. [In Russ]. DOI: 10.25018/0236_1493_2024_5_0_117.

6. Sokolov A. A., Miroshnikov A. S., Sokolova E. A. Control algorithms for mining and metallurgical plant-ambient environment system stability. Gornyi Zhurnal. 2016, no. 12, pp. 83—86. [In Russ]. DOI: 10.17580/gzh.2016.12.17.

7. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Geoecological monitoring during mining operations. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 2, pp. 580—588. [In Russ]. DOI: 10.21177/1998-4502-2024-16-2-580-588.

8. Jablonska M., Rachwal M., Wawer M., Kodziolka-Gawel M., Teper E., Krzykawski T., SmolkaDanilowska D. Mineralogical and chemical specificity of Dusts from ferrous and non-ferrous metallurgy in view of their magnetic susceptibility. Minerals. 2021, vol. 11, article 216. DOI: 10.3390/ min11020216.

9. Hui Liu, Fenghua Shen, Qingzhu Li, Minneng Wen, Hongliang Zhang, Linhua Jiang, Chenghang Zheng, Yan Liu, Tao Liu, Liyuan Chai Systematic control technologies for gaseous pollutants from nonferrous metallurgy. Journal of Environmental Sciences. 2023, vol. 123, pp. 65—82. DOI: 10.1016/j. jes.2022.01.035.

10. Semenkov I. N., Sharapova A. V., Lednev S. A., Koroleva T. V. The fractional composition of compounds of metals and sulfur in the upper layer of soils of the impact zones of a coal mine (Central Russian forest-steppe). Arid Ecosystems. 2023, vol. 13, pp. 224 —231. DOI: 10.1134/s2079096123020130.

11. Evdokimova M. V., Gorlenko A. S., Yakovlev A. S. Assessment of ecological condition of soils in the zone of impact of Sredneuralsky copper smelting plant. Moscow University Bulletin. Series 17. Soil science. 2024, no. 2, pp. 84—94. [In Russ]. DOI: 10.55959/MSU0137-0944-17-2024-79-2-84-94.

12. Shabanov M. V., Marichev M. S. Assessment of the transformation of natural-territorial complexes in mining technogenesis. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2020, vol. 331, no. 3, pp. 90—99. [In Russ]. DOI: 10.18799/24131830/2020/3/2535.

13. Grosheva A. I. Ecological and geochemical assessment of the state of air environment of Mednogorskiy territorial-production complex. Shag v nauku. 2018, no. 2, pp. 226—229. [In Russ].

14. Gamm T. A., Grivko E. V. Conditions of formation of hydrochemical indicators of underground and surface waters during open-pit mining of sinter ores. Ecosystems. 2021, no. 28, pp. 62—69. [In Russ].

15. Udachin V. I., Kitagawa R., Williamson B., Sugahara T. Ores and metallurgical slags of Karabash (Southern Urals) and Ashio (Japan) deposits: composition and potential impact on the environment. Metallogeniya drevnikh i sovremennykh okeanov-2002. Formirovanie i osvoenie mestorozhdeniy v ofiolitovykh zonakh: materialy Vos'moy nauchnoy studencheskoy shkoly [Metallogeny of ancient and modern oceans-2002. Formation and development of deposits in ophiolite zones: materials of the Eighth Scientific Student School], Miass, 2002, pp. 267—275. [In Russ].

16. Tatsiy Y. G., Udachin V. N., Aminov P. G. Ecogeochemistry of mercury in the zone of the Karabashmed smelter emissions. Geochemistry. 2017, no. 10, pp. 942—953. [In Russ]. DOI: 10.7868/ S0016752517100090.

17. Galakhina N. E., Lozovik P. A. Changes in the chemical composition of surface water at the Korpangskoe iron ore deposit. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences. 2018, no. 9, pp. 15—30. [In Russ]. DOI: 10.17076/lim733.

18. Makunina G. S. Geoecological features of Karabash technogenic anomaly. Geoecology, engineering geology, hydrogeology, geocryology. 2001, no. 3, pp. 221—226. [In Russ].

19. Udachin V. N., Williamson B., Kitagawa Ruji, Lonschakova G. F., Aminov P. G., Udachin L. G. Chemical composition and mechanisms of formation of acid mine waters of the Southern Urals. Water: chemistry and ecology. 2011, no. 10(40), pp. 3—8. [In Russ].

20. Ulrich D. V., Jenis Yu. A., Denisov S. E., Zhbankov G. O. Modern ecological condition of water sources of the Karabash mining and industrial centre. Water: chemistry and ecology. 2013, no. 6, pp. 104—106. [In Russ].

21. Kulikova А. А. A new approach to estimating emissions from mining enterprises, taking into account the carbon footprint. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 4, pp. 825—832. [In Russ]. DOI: 10.21177/1998-4502-2023-15-4-825-832.

22. Silaev V. I., Klyuev R. V., Eremeev D. V., Martynova T. A., Danilchenko Yu.V. Analysis of the carbon footprint created by mining enterprises. MIAB. Mining Inf. Anal. Bull. 2023, no. 11-1, pp. 265—277. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_265.

23. Takayabu H., Kagawa S., Fujii H., Managi S., Eguchi S. Impacts of productive efficiency improvement in the global metal industry on CO2. Journal of Environmental Management. 2019, vol. 248, article 109261. DOI: 10.1016/j.jenvman.2019.109261.

24. Qin C., Li S. L., Waldron S., Yue F. J., Wang Z. J., Zhong J., Ding H., Liu C. Q. High-frequency monitoring reveals how hydrochemistry and dissolved carbon respond to rainstorms at a karstic critical zone, Southwestern China. Science of the Total Environment. 2020, vol. 714, article 136833. DOI: 10.1016/j.scitotenv.2020.136833.

25. Rojano F., Huber D. H., Ugwuanyi I. R., Kemajou-Tchamba A. L., Hass A. Rainstorms inducing shifts of river hydrochemistry during a winter season in the Central Appalachian region. Water. 2022, vol. 14, no. 17, article 2687. DOI: 10.3390/w14172687.

26. Abdrakhmanov R. F., Popov V. G. Geokhimiya i formirovanie podzemnykh vod Yuzhnogo Urala [Geochemistry and Groundwater Formation Proctsses in the Southtrn Urals], Ufa, Gilem, 2010, pp. 32—27.

27. Liu W., Xu H., Liao Y., Quan Z., Li S., Zhao S. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel. 2019, vol. 235, pp. 847—854. DOI: 10.1016/j.fuel.2018.08.062.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.