Lifting technologies for deep-sea solid mineral extraction facilities: Current situation and prospects

This review article is devoted to the problems of formation of the mining complex at deep-water development of unique solid minerals. The mining and geological conditions of deposits, mineral composition of minerals, economic analysis of the cost of one ton of dry mass of ferromanganese nodules, cobalt-bearing manganese crusts and deep-sea polymetallic sulfides is analyzed. A review of international mining projects for unique solid minerals, an analysis of proposed mining methods, and a typical mining complex based on the analysis were performed. Among the considered variants, the general trends in the formation of the mining machine have been deduced, and the tests of prototypes of promising projects such as Mine-Ro (South Korea), Apollo-II (Netherlands), Patania II (Belgium), etc. have been considered. The variants of auxiliary vessel formation, auxiliary operations performed by it, as well as methods of equipment placement for maintenance and dispatching of machines were considered. It was also noted that the main problem of the complex is the lack of an effective lifting method. In this regard, an analysis of rational methods of lifting was performed. Among the considered variants cyclic, in-line, erlift, two-stage lifting and cyclic-in-line method were singled out. Energy consumption and productivity of each variant are determined, the graph of dependence of specific productivity on mining depth is presented. The cyclic-flow method of solid minerals lifting is analyzed, productivity and limiting factors are estimated.

Keywords: deep sea mining, mining complex, energy efficiency, nodules, crusts, international seabed authority, lifting technologies, mineral resources.
For citation:

Serzhan S. L., Malevannyj D. V. Lifting technologies for deep-sea solid mineral extraction facilities: Current situation and prospects. MIAB. Mining Inf. Anal. Bull. 2024; (12-1):107-128. [In Russ]. DOI: 10.25018/0236_1493_2024_121_0_107.

Acknowledgements:
Issue number: 12
Year: 2024
Page number: 107-128
ISBN: 0236-1493
UDK: 622.23.05
DOI: 10.25018/0236_1493_2024_121_0_107
Article receipt date: 17.06.2024
Date of review receipt: 30.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

S.L. Serzhan1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Serzhan_SL@pers.spmi.ru, ORCID ID: 0000-0002-2248-9156,
D.V. Malevannyj1, Graduate Student, e-mail: mmmono@yandex.ru, ORCID ID: 0000-0002-8597-8002,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

S.L. Serzhan, e-mail: Serzhan_SL@pers.spmi.ru.

Bibliography:

1. Leng D., Shao S., Xie Y., Wang Н., Liu G. A brief review of recent progress on deep sea mining vehicle. Ocean Engineering. 2021, vol. 228, 108565. DOI: 10.1016/j.oceaneng.2020.108565.

2. Yubko V. M., Ponomareva I. N., Lygina T. I. Geological exploration works at the deposit of polymetallic nodules in the Clarion–Clipperton Zone of the Pacific Ocean: history and research results. Journal of Oceanological Research. 2023, vol. 51, no. 4, pp. 90—134. [In Russ]. DOI: 10.29006/15642291.JOR-2023.51(4).5.

3. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Gornyi Zhurnal. 2020, no. 1, pp. 28—32. [In Russ]. DOI: 10.17580/ gzh.2020.01.05.

4. Baturin G. N. Distribution of elements in ferromanganese nodules in seas and lakes. Lithology and Mineral Resources. 2019, vol. 54, pp. 362—373. DOI: 10.1134/s002449021905002x.

5. Toro N., Jeldres R. I., Órdenes J. A., Robles P., Navarra A. Manganese nodules in Chile, an alternative for the production of Co and Mn in the future—A review. Minerals. 2020, vol. 10, no. 8, article 674. DOI: 10.3390/min10080674.

6. Fritz B., Heidak P., Vasters J., Kuhn T., Franken G., Schmidt M. Life cycle impact on climate change caused by metal production from deep sea manganese nodules versus land-based deposits. Resources, Conservation and Recycling. 2023, vol. 193. DOI: 10.1016/j.resconrec.2023.106976.

7. Sparenberg O. A historical perspective on deep-sea mining for Manganese nodules, 1965—2019. Extractive Industries and Society. 2019, vol. 6, no. 3, pp. 842—854. DOI: 10.1016/j.exis.2019.04.001.

8. Okamoto N., Shiokawa S., Kawano S., Sakurai H., Yamaji N., Kurihara M. Current status of Japan’s activities for deep-sea commercial mining campaign. 2018 Oceans — MTS/IEEE Kobe TechnoOceans (OTO). 2018, pp. 1—7. DOI: 10.1109/OCEANSKOBE.2018.8559373.

9. Koteleva N., Valnev V. Automatic detection of maintenance scenarios for equipment and control systems in industry. Applied Sciences. 2023, vol. 13, article 12997. DOI: 10.3390/app132412997.

10. Nikolaichuk L., Sinkov L., Malisheva A. Analysis of the problems and development prospects of the oil refining industry of Russia. Journal of Business and Retail Management Research. 2017, no. 4, vol. 11, pp. 177—183. DOI: 10.24052/jbrmr/v11is04/aotpadpotorior.

11. Belkin I. M., Andersson P. S., Langhof J. On the discovery of ferromanganese nodules in the World Ocean. Deep Sea Research, Part I: Oceanographic Research Papers. 2021, vol. 175, article 103589. DOI: 10.1016/j.dsr.2021.103589.

12. Wang S. Yang X., Li L., Sun P., Yang L., Li F. Shear behaviour of a rock bridge sandwiched between incipient joints under the influence of hydraulic pressures. International Journal of Mining Science and Technology. 2023, vol. 33, no. 2, pp. 233—242. DOI: 10.1016/j.ijmst.2022.10.007.

13. Mbani B., Greinert J. Analysis-ready optical underwater images of manganese-nodule covered seafloor of the Clarion-Clipperton Zone. Scientific Data. 2023, vol. 10, article 316. DOI: 10.1038/ s41597-023-02245-5.

14. Lu C. Y., Yang J. M. Path planning of subsea mining vehicle. Proceedings of the Thirty-first (2021) International Ocean and Polar Engineering Conference Rhodes. 2021, pp. 1083—1115. DOI: 10.1016/j.ijmst.2023.07.007.

15. Zenghui Liu, Kai Liu, Xuguang Chen, Zhengkuo Ma, Rui Lv, Changyun Wei, Ke Ma Deep-sea rock mechanics and mining technology: State of the art and perspectives. International Journal of Mining Science and Technology. 2023, vol. 33, no. 9, pp. 1083—1115. DOI: 10.1016/j.ijmst.2023.07.007.

16. Toro N., Robles P., Jeldres R. I. Seabed mineral resources, an alternative for the future of renewable energy. A critical review. Ore Geology Reviews. 2020, vol. 126, article 103699. DOI: 10.1016/j. oregeorev.2020.103699.

17. Atmanand M. A., Ramadass G. A. Concepts of deep-sea mining technologies. Deep-sea mining. Cham: Springer, 2017, pp. 305—343. DOI: 10.1007/978-3-319-52557-0_10.

18. White M., Manocchio A., Lowe J., Johnston M., Sant T. Resource drilling of the Solwara 1 seafloor massive sulfide (SMS) deposit. Proceedings of offshore technology conference. Houston, OnePetro, 2011, pp. 1—11. DOI: 10.4043/21645-MS.

19. Lee C. H., Kim H. W., Choi J. S., Yeu T. K., Lee M. U., Oh J. W., Hong S. Study of deep-sea mining robot «MineRo» using table of orthogonal arrays. Journal of Ocean Engineering and Technology. 2014, vol. 28, no. 2, pp. 152—159. DOI: 10.5574/KSOE.2014.28.2.152.

20. Tang Y. C., Duan W. D., Qiao Z. L., Jiang P., Hu H. C. Experimental study on rock fragmentation of underwater blasting. Blasting. 2016, vol. 33, pp. 102—106. DOI: 10.1016/j.ijrmms.2021.104797.

21. Teague J., Allen M. J., Scott T. B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring. Ocean Engineering. 2018, vol. 147, pp. 333—339. DOI: 10.1016/j. oceaneng.2017.10.046.

22. Knodt S., Kleinen T., Dornieden C., Lorscheidt J., Bjørneklett B., Mitzlaff A. Development and engineering of offshore mining systems-state of the art and future perspectives. Proceedings of offshore technology conference. Houston, OnePetro, 2016, pp. 1—22. DOI: 10.4043/27185-MS.

23. Hu Q., Li Z., Zhai X., Zheng H. Development of hydraulic lifting system of deep-sea mineral resources. Minerals. 2022, vol. 12, article 1319. DOI: 10.3390/min12101319.

24. Schneider D. Deep-sea mining stirs up muddy questions. A controversial pilot program will collect metal-rich nodules from the ocean floor. IEEE Spectrum. 2022, vol. 59, no. 1, pp. 56—57. DOI: 10.1016/j.ijmst.2023.07.007.

25. Volz J. B., Geibert W., Köhler D., Michiel M., van der Loeff R., Kasten S. Alpha radiation from polymetallic nodules and potential health risks from deep-sea mining. Scientific Reports. 2023, vol. 13, article 7985. DOI: 10.1038/s41598-023-33971-w.

26. Duncombe J. The 2-year countdown to deep-sea mining. Eos. 2022, vol. 103. DOI: 10.1029/ 2022EO220040.

27. Zhukovskiy Y., Koshenkova A., Vorobeva V., Rasputin D., Pozdnyakov R. Assessment of the impact of technological development and scenario forecasting of the sustainable development of the fuel and energy complex. Energies. 2023, vol. 16, no. 7, article 3185. DOI: 10.3390/en16073185.

28. Fedorova E. R., Pupysheva E. A., Morgunov V. V. Settling parameters determined during thickening and washing of red muds. Tsvetnye Metally. 2023, no. 4, pp. 77—85. [In Russ]. DOI: 10.17580/ tsm.2023.04.10.

29. Ushkova T., Kopteva A., Shpenst V., Sutikno T., Jopri M. H. In-line measurement of multiphase flow viscosity. Bulletin of Electrical Engineering and Informatics. 2022, vol. 11, no. 6, pp. 3609— 3616. DOI: 10.11591/eei.v11i6.4856.

30. Sudarikov S. M., Yungmeister D. A., Korolev R. I., Petrov V. A. On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs. Journal of Mining Institute. 2022, vol. 253, pp. 82—96. [In Russ]. DOI: 10.31897/ PMI.2022.14.

31. Evdokimov A. N., Pharoe B. L. Indicator role of rare and rare-earth elements of the Northwest manganese ore occurrence (South Africa) in the genetic model of supergene manganese deposits. Journal of Mining Institute. 2021, vol. 252, pp. 814—825. [In Russ]. DOI: 10.31897/PMI.2021.6.4.

32. Yungmeister D. A., Sudarikov S. M., Kireev K. A. Feasibility of type of deep-water technologies for the extraction of marine ferro-manganese nodules. Journal of Mining Institute. 2019, vol. 235, pp. 88. [In Russ]. DOI: 10.31897/PMI.2019.1.88.

33. Yang J., Liu L., Lyu H., Lin Zh Deep-sea mining equipment in China: current status and prospect. Strategic Study of Chinese Academy of Engineering. 2020, vol. 22, no. 6, pp. 1—9. DOI: 10.15302/J-SSCAE-2020.06.001.

34. Serzhan S. L., Skrebnev V. I., Malevanny D. V. Study of the effects of steel and polymer pipe roughness on the pressure loss in tailings slurry hydrotransport. Obogashchenie Rud. 2023, no. 4, pp. 41—49. [In Russ]. DOI: 10.17580/or.2023.04.08.

35. Yungmeister D. A., Korolev R. I., Borodkin E. O. Justification of the design of technical means for the extraction of deep-sea minerals. MIAB. Mining Inf. Anal. Bull. 2020, no. S5, pp. 3—13. [In Russ]. DOI: 10.25018/0236-1493-2020-1-5-3-13.

36. Yungmeister D. A., Smolenskii M. P., Isaev A. I., Efimov F. A. Designs and parameters of stepping mechanisms for the complex of extraction of minerals scattered on the seabed. MIAB. Mining Inf. Anal. Bull. 2023, no. 11-1, pp. 159—174. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_159.

37. Kozyryatskiy L. M., Morgunov V. M., Yakovlev V. M., Gemmerling O. A. Erlifty i gidroelevatory v gornoy promyshlennosti: uchebnoe posobie [Gemmerling O. A. Erlifts and hydroelevators in the mining industry: textbook], Vologda, Infra-Inzheneriya, 2023. 160 с.

38. Malukhin N. G., Drobadenko V. P., Vilmis A. L. Scientific and methodological substantiation of erlift hydraulic lifting in the development of deposits on the seabed and ocean floor. MIAB. Mining Inf. Anal. Bull. 2015, no. S11, pp. 51—60. [In Russ].

39. Aleksandrov V. I., Sobota E. Specific energy intensity of hydraulic transportation of mineral raw material products. Journal of Mining Institute. 2015, vol. 213, pp. 9—17. [In Russ].

40. Aleksandrov V. I., Sobota E. Modeling and calculation of the system of hydraulic lifting of rock mass at underwater development of mineral raw materials. Journal of Mining Institute. 2003, vol. 157, pp. 140—143. [In Russ].

41. Egorov I. V. Zhabin A. B., Polyakov A. V. Determination of rational parameters of hydrotransport of solid minerals in the system of hydraulic lift with an underwater station. News of the Tula state university. Technical sciences. 2019, no. 9, pp. 89—97. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.