Bibliography: 1. Leng D., Shao S., Xie Y., Wang Н., Liu G. A brief review of recent progress on deep sea mining vehicle. Ocean Engineering. 2021, vol. 228, 108565. DOI: 10.1016/j.oceaneng.2020.108565.
2. Yubko V. M., Ponomareva I. N., Lygina T. I. Geological exploration works at the deposit of polymetallic nodules in the Clarion–Clipperton Zone of the Pacific Ocean: history and research results. Journal of Oceanological Research. 2023, vol. 51, no. 4, pp. 90—134. [In Russ]. DOI: 10.29006/15642291.JOR-2023.51(4).5.
3. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Gornyi Zhurnal. 2020, no. 1, pp. 28—32. [In Russ]. DOI: 10.17580/ gzh.2020.01.05.
4. Baturin G. N. Distribution of elements in ferromanganese nodules in seas and lakes. Lithology and Mineral Resources. 2019, vol. 54, pp. 362—373. DOI: 10.1134/s002449021905002x.
5. Toro N., Jeldres R. I., Órdenes J. A., Robles P., Navarra A. Manganese nodules in Chile, an alternative for the production of Co and Mn in the future—A review. Minerals. 2020, vol. 10, no. 8, article 674. DOI: 10.3390/min10080674.
6. Fritz B., Heidak P., Vasters J., Kuhn T., Franken G., Schmidt M. Life cycle impact on climate change caused by metal production from deep sea manganese nodules versus land-based deposits. Resources, Conservation and Recycling. 2023, vol. 193. DOI: 10.1016/j.resconrec.2023.106976.
7. Sparenberg O. A historical perspective on deep-sea mining for Manganese nodules, 1965—2019. Extractive Industries and Society. 2019, vol. 6, no. 3, pp. 842—854. DOI: 10.1016/j.exis.2019.04.001.
8. Okamoto N., Shiokawa S., Kawano S., Sakurai H., Yamaji N., Kurihara M. Current status of Japan’s activities for deep-sea commercial mining campaign. 2018 Oceans — MTS/IEEE Kobe TechnoOceans (OTO). 2018, pp. 1—7. DOI: 10.1109/OCEANSKOBE.2018.8559373.
9. Koteleva N., Valnev V. Automatic detection of maintenance scenarios for equipment and control systems in industry. Applied Sciences. 2023, vol. 13, article 12997. DOI: 10.3390/app132412997.
10. Nikolaichuk L., Sinkov L., Malisheva A. Analysis of the problems and development prospects of the oil refining industry of Russia. Journal of Business and Retail Management Research. 2017, no. 4, vol. 11, pp. 177—183. DOI: 10.24052/jbrmr/v11is04/aotpadpotorior.
11. Belkin I. M., Andersson P. S., Langhof J. On the discovery of ferromanganese nodules in the World Ocean. Deep Sea Research, Part I: Oceanographic Research Papers. 2021, vol. 175, article 103589. DOI: 10.1016/j.dsr.2021.103589.
12. Wang S. Yang X., Li L., Sun P., Yang L., Li F. Shear behaviour of a rock bridge sandwiched between incipient joints under the influence of hydraulic pressures. International Journal of Mining Science and Technology. 2023, vol. 33, no. 2, pp. 233—242. DOI: 10.1016/j.ijmst.2022.10.007.
13. Mbani B., Greinert J. Analysis-ready optical underwater images of manganese-nodule covered seafloor of the Clarion-Clipperton Zone. Scientific Data. 2023, vol. 10, article 316. DOI: 10.1038/ s41597-023-02245-5.
14. Lu C. Y., Yang J. M. Path planning of subsea mining vehicle. Proceedings of the Thirty-first (2021) International Ocean and Polar Engineering Conference Rhodes. 2021, pp. 1083—1115. DOI: 10.1016/j.ijmst.2023.07.007.
15. Zenghui Liu, Kai Liu, Xuguang Chen, Zhengkuo Ma, Rui Lv, Changyun Wei, Ke Ma Deep-sea rock mechanics and mining technology: State of the art and perspectives. International Journal of Mining Science and Technology. 2023, vol. 33, no. 9, pp. 1083—1115. DOI: 10.1016/j.ijmst.2023.07.007.
16. Toro N., Robles P., Jeldres R. I. Seabed mineral resources, an alternative for the future of renewable energy. A critical review. Ore Geology Reviews. 2020, vol. 126, article 103699. DOI: 10.1016/j. oregeorev.2020.103699.
17. Atmanand M. A., Ramadass G. A. Concepts of deep-sea mining technologies. Deep-sea mining. Cham: Springer, 2017, pp. 305—343. DOI: 10.1007/978-3-319-52557-0_10.
18. White M., Manocchio A., Lowe J., Johnston M., Sant T. Resource drilling of the Solwara 1 seafloor massive sulfide (SMS) deposit. Proceedings of offshore technology conference. Houston, OnePetro, 2011, pp. 1—11. DOI: 10.4043/21645-MS.
19. Lee C. H., Kim H. W., Choi J. S., Yeu T. K., Lee M. U., Oh J. W., Hong S. Study of deep-sea mining robot «MineRo» using table of orthogonal arrays. Journal of Ocean Engineering and Technology. 2014, vol. 28, no. 2, pp. 152—159. DOI: 10.5574/KSOE.2014.28.2.152.
20. Tang Y. C., Duan W. D., Qiao Z. L., Jiang P., Hu H. C. Experimental study on rock fragmentation of underwater blasting. Blasting. 2016, vol. 33, pp. 102—106. DOI: 10.1016/j.ijrmms.2021.104797.
21. Teague J., Allen M. J., Scott T. B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring. Ocean Engineering. 2018, vol. 147, pp. 333—339. DOI: 10.1016/j. oceaneng.2017.10.046.
22. Knodt S., Kleinen T., Dornieden C., Lorscheidt J., Bjørneklett B., Mitzlaff A. Development and engineering of offshore mining systems-state of the art and future perspectives. Proceedings of offshore technology conference. Houston, OnePetro, 2016, pp. 1—22. DOI: 10.4043/27185-MS.
23. Hu Q., Li Z., Zhai X., Zheng H. Development of hydraulic lifting system of deep-sea mineral resources. Minerals. 2022, vol. 12, article 1319. DOI: 10.3390/min12101319.
24. Schneider D. Deep-sea mining stirs up muddy questions. A controversial pilot program will collect metal-rich nodules from the ocean floor. IEEE Spectrum. 2022, vol. 59, no. 1, pp. 56—57. DOI: 10.1016/j.ijmst.2023.07.007.
25. Volz J. B., Geibert W., Köhler D., Michiel M., van der Loeff R., Kasten S. Alpha radiation from polymetallic nodules and potential health risks from deep-sea mining. Scientific Reports. 2023, vol. 13, article 7985. DOI: 10.1038/s41598-023-33971-w.
26. Duncombe J. The 2-year countdown to deep-sea mining. Eos. 2022, vol. 103. DOI: 10.1029/ 2022EO220040.
27. Zhukovskiy Y., Koshenkova A., Vorobeva V., Rasputin D., Pozdnyakov R. Assessment of the impact of technological development and scenario forecasting of the sustainable development of the fuel and energy complex. Energies. 2023, vol. 16, no. 7, article 3185. DOI: 10.3390/en16073185.
28. Fedorova E. R., Pupysheva E. A., Morgunov V. V. Settling parameters determined during thickening and washing of red muds. Tsvetnye Metally. 2023, no. 4, pp. 77—85. [In Russ]. DOI: 10.17580/ tsm.2023.04.10.
29. Ushkova T., Kopteva A., Shpenst V., Sutikno T., Jopri M. H. In-line measurement of multiphase flow viscosity. Bulletin of Electrical Engineering and Informatics. 2022, vol. 11, no. 6, pp. 3609— 3616. DOI: 10.11591/eei.v11i6.4856.
30. Sudarikov S. M., Yungmeister D. A., Korolev R. I., Petrov V. A. On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs. Journal of Mining Institute. 2022, vol. 253, pp. 82—96. [In Russ]. DOI: 10.31897/ PMI.2022.14.
31. Evdokimov A. N., Pharoe B. L. Indicator role of rare and rare-earth elements of the Northwest manganese ore occurrence (South Africa) in the genetic model of supergene manganese deposits. Journal of Mining Institute. 2021, vol. 252, pp. 814—825. [In Russ]. DOI: 10.31897/PMI.2021.6.4.
32. Yungmeister D. A., Sudarikov S. M., Kireev K. A. Feasibility of type of deep-water technologies for the extraction of marine ferro-manganese nodules. Journal of Mining Institute. 2019, vol. 235, pp. 88. [In Russ]. DOI: 10.31897/PMI.2019.1.88.
33. Yang J., Liu L., Lyu H., Lin Zh Deep-sea mining equipment in China: current status and prospect. Strategic Study of Chinese Academy of Engineering. 2020, vol. 22, no. 6, pp. 1—9. DOI: 10.15302/J-SSCAE-2020.06.001.
34. Serzhan S. L., Skrebnev V. I., Malevanny D. V. Study of the effects of steel and polymer pipe roughness on the pressure loss in tailings slurry hydrotransport. Obogashchenie Rud. 2023, no. 4, pp. 41—49. [In Russ]. DOI: 10.17580/or.2023.04.08.
35. Yungmeister D. A., Korolev R. I., Borodkin E. O. Justification of the design of technical means for the extraction of deep-sea minerals. MIAB. Mining Inf. Anal. Bull. 2020, no. S5, pp. 3—13. [In Russ]. DOI: 10.25018/0236-1493-2020-1-5-3-13.
36. Yungmeister D. A., Smolenskii M. P., Isaev A. I., Efimov F. A. Designs and parameters of stepping mechanisms for the complex of extraction of minerals scattered on the seabed. MIAB. Mining Inf. Anal. Bull. 2023, no. 11-1, pp. 159—174. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_159.
37. Kozyryatskiy L. M., Morgunov V. M., Yakovlev V. M., Gemmerling O. A. Erlifty i gidroelevatory v gornoy promyshlennosti: uchebnoe posobie [Gemmerling O. A. Erlifts and hydroelevators in the mining industry: textbook], Vologda, Infra-Inzheneriya, 2023. 160 с.
38. Malukhin N. G., Drobadenko V. P., Vilmis A. L. Scientific and methodological substantiation of erlift hydraulic lifting in the development of deposits on the seabed and ocean floor. MIAB. Mining Inf. Anal. Bull. 2015, no. S11, pp. 51—60. [In Russ].
39. Aleksandrov V. I., Sobota E. Specific energy intensity of hydraulic transportation of mineral raw material products. Journal of Mining Institute. 2015, vol. 213, pp. 9—17. [In Russ].
40. Aleksandrov V. I., Sobota E. Modeling and calculation of the system of hydraulic lifting of rock mass at underwater development of mineral raw materials. Journal of Mining Institute. 2003, vol. 157, pp. 140—143. [In Russ].
41. Egorov I. V. Zhabin A. B., Polyakov A. V. Determination of rational parameters of hydrotransport of solid minerals in the system of hydraulic lift with an underwater station. News of the Tula state university. Technical sciences. 2019, no. 9, pp. 89—97. [In Russ].