Simulation modeling of underground blending warehouse operation at structurally complex salt deposits

This article presents a review of some complicating factors in mining structurally complex salt deposits composed of different commercial-purity ore types included in manufacture of marketable products as a case-study of Nivenskoe field of potassium and magnesium salts. Based on the review, a decision-making algorithm was proposed and described. The introduction of the algorithm can enable reduction and control of ecological risks associated with mining of such deposits, and can enhance profitability of mining practices. Aimed to reveal the flaws of the proposed approach, a simulation model of operation of underground blending warehouses was designed in the environment AnyLogic. The internal structures and operation of the model were described, and the model was integrated in the decision-making algorithm architecture. A mining schedule ‘playing’ in time allows the advanced detection of the operation periods when it is necessary to adjust the mining schedule or the managerial decisions made. This article presents the finished conception of a future mining business unit, which divides authorities and liabilities of production departments with maintenance of the cumulative stability of their communications, and describes the control chart and the approach to operating activities.

Keywords: structurally complex salt deposit, potassium and potassium–magnesium deposits, decision-making algorithm, mine operation simulation model, underground blending warehouse, optimum composition procedure, mining operation automation, automated control.
For citation:

Lipnitsky N. A., Ogorodnikov R. G., Ustinova Ya. V. Simulation modeling of underground blending warehouse operation at structurally complex salt deposits. MIAB. Mining Inf. Anal. Bull. 2023;(1):142-158. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_142.

Issue number: 1
Year: 2023
Page number: 142-158
ISBN: 0236-1493
UDK: 622.272, 681.5
DOI: 10.25018/0236_1493_2023_1_0_142
Article receipt date: 05.05.2022
Date of review receipt: 21.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

N.A. Lipnitsky1, Deputy General Director for Development, e-mail:, ORCID ID: 0000-0003-3000-8751,
R.G. Ogorodnikov1, Leading Specialist, e-mail:,
Ya.V. Ustinova, Cand. Sci. (Eng.), Assistant Professor, Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia, e-mail: ORCID ID: 0000-0002-4382-3301,
1 SPb-Giproshakht Ltd, 191186, Saint-Petersburg, Russia.


For contacts:

Ya.V. Ustinova, e-mail:


1. Vishnyakov V. V., Smychnik A. D., Panov V. D., Vafina M. S., Rakhmatulina Y. Sh. Structure and formation conditions of potassium-magnesium salts of the central part of the Niwenskaya depression of the Kaliningrad-Gdansk salt basin. Otechestvennaya geologiya. 2017, no. 4, pp. 90—97. [In Russ].

2. Goncharenko O. P., Lashina I. L. Conditions for the formation of potassium-magnesium salts of the Upper Permian Kaliningrad-Gdansk section of the Middle European salt basin (on the results of the study of inclusions in minerals). Problemy mineralogii, petrografii i metallogenii. Nauchnye chteniya pamyati P.N. Chirvinskogo [Problems of Mineralogy, Petrography and Metallogeny. Scientific readings in memory of P.N. Chirvinsky]. 2021, no. 24, pp. 25—30. [In Russ]. DOI: 10.17072/chirvinsky.2021.25.

3. Tibilov D. P., Domakhina Yu. A. Development of potassium ore mining potential, sulfate fertilizers production in the kaliningrad region and sales of potassium sulfate in the world market. The Russian Journal of Industrial Economics. 2020, vol. 13, no. 2, pp. 225—232. [In Russ]. DOI: 10.17073/2072-1633-2020-2-225-232.

4. Galchenko Yu. P., Leizer V. I., Vysotin N. G., Yakusheva E. D. Procedure justification for laboratory research of secondary stress field in creation and application of convergent technology for underground mining of rock salt. MIAB. Mining Inf. Anal. Bull. 2019, no. 11, pp. 35—47. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-35-47.

5. Zakharov V. N., Fedorov E. V., Eremenko V. A., Lagutin D. V. Geomechanical support for the design of mining reserves of rock salt in the Iletskoye field. Gornyi Zhurnal. 2018, no. 2, pp. 41—47. [In Russ]. DOI: 10.17580/gzh.2018.02.06.

6. Zhukov A. A., Prigara A. M., Tsarev R. I., Voroshilov V. A. Mining engineering problem solving at the potassium salt deposit by geophysical methods. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-1, pp. 82—91. [In Russ]. DOI: 10.25018/0236_1493_2022_51_0_82.

7. Zubov V. P., Smychnik A. D. The concept of reducing the risks of potash mines flooding caused by groundwater inrush into excavations. Journal of Mining Institute. 2015, vol. 215, pp. 29—37. [In Russ].

8. Lipnitsky N. A., Kuskova Ya. V. Complex approach to the development of potash, potassium-magnesium and salt deposits. E3S Web of Conferences. 2018, vol. 41, no. 1, article 01005. DOI: 10.1051/e3sconf/20184101005.

9. Peshkov A. A., Matsko N. A., Kononykhin M. A., Morev A. N. Modern approaches to the substantiation of strategies of development of mineral resources. MIAB. Mining Inf. Anal. Bull. 2009, no. 2, pp. 275—297. [In Russ].

10. Vishnyakov A. K., Moskovskiy G. A., Goncharenko O. P. Mineral composition of halogenic rocks of the central part of the Niven trough of the Kaliningrad-Gdansk salt basin and conditions of their formation. Lithosphere. 2016, no. 4, pp. 102—113. [In Russ].

11. Shishlyannikov D. I. Diagnostic assessment of base components of mining machinery of potash mines by analysis of excited vibrations. Journal of Physics. Conference Series. 2021, vol. 1753, no. 1, article 012065. DOI: 10.1088/1742-6596/1753/1/012065.

12. Lipnitsky N. A., Kuskova Ya. V. Mechanical properties and mineralogical composition of potash ore as a factor in selecting the processing method. Materials Science Forum. 2021, vol. 1022, pp. 17—26. DOI: 10.4028/

13. Alekseenko A. V., Drebenstedt C., Bech J. Assessment and abatement of the eco-risk caused by mine spoils in the dry subtropical climate. Environmental Geochemistry and Health. 2022, vol. 44, pp. 1581—1603. DOI: 10.1007/s10653-021-00885-3.

14. Alekseenko V. A., Shvydkaya N. V., Alekseenko A. V., Machevariani M. M., Bech J., Pashkevich M. A., Puzanov A. V., Nastavkin A. V., Roca N. Element accumulation patterns of native plant species under the natural geochemical stress. Plants. 2021, vol. 10, no. 1, p. 33. DOI: 10.3390/plants10010033.

15. Shishlyannikov D., Zvonarev I. Investigation of the destruction process of potash ore with a single cutter using promising cross cutting pattern. Applied Sciences. 2021, vol. 11, no. 1, p. 464. DOI:10.3390/app11010464.

16. Laptev B. V. Historiography of accidents during the development of salt deposits. Occupational Safety in Industry. 2011, no. 12, pp. 41—46. [In Russ].

17. Zubov V. P., Kovalski E. R., Antonov S. V., Pachgin V. V. Improving the safety of mines in developing Verkhnekamsk potassium and magnesium salts. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 22—33. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-22-33.

18. Mikryukov A. Yu., Kamenskikh Y. V. One of the way to improve the efficiency of exploitability of shore lifting inputs of kaline rooms. Tekhnologicheskoe oborudovanie dlya gornoy i neftegazovoy promyshlennosti. Sbornik trudov XVII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Technological equipment for the mining and oil and gas industry. Proceedings of the XVII International Scientific and Technical Conference], Ekaterinburg, UGGU, 2019, pp. 180—183. [In Russ].

19. Makarov V. A., Malinovsky E. G., Katser I. I., Kurchin G. S., Efimov A. V. Dynamic system of quality management of mineral raw materials. Journal of Siberian Federal University. Engineering & Technologies. 2016, no. 1, pp. 126—131. [In Russ].

20. Erich O. V. Ore quality management in mining planning. Journal of Mining Institute. 2002, vol. 150, pp. 57—59. [In Russ]. 

21. Boguslavsky E. I. Management of ore quality — the basis of mining technological management. Journal of Mining Institute. 2006, vol. 168, pp. 26—28. [In Russ].

22. Semenov A. S., Kruk M. N. Project risk analysis and management decision-making in determining the parameters of ore quarries. Journal of Industrial Pollution Control. 2017, vol. 33, no. 1, pp. 1024—1028.

23. Pronin E. M. Optimization of mining-industrial complexes on the basis of calculation of the material balance of the technological process. Journal of Mining Institute. 2014, vol. 208, pp. 172—180. [In Russ].

24. Hustrulid W. A., Bullock R. L. Underground Mining Methods: Engineering Fundamentals and International Case Studies. SME. 2001, 718 pp.

25. Statsenko L. G., Branovets N. E. Development of the module «averaging warehouse» information system to stabilize the quality of minerals in the quarry. Vestnik of Nosov Magnitogorsk State Technical University. 2014, no. 2(46), pp. 5—10. [In Russ].

26. Shevelev V. A. Determination of the capacity of a buffer-medium warehouse, taking into account the parameters of technological equipment. News of the Tula state university. Sciences of Earth. 2012, no. 2, pp. 189—194. [In Russ].

27. Prokop'eva O. S. Analysis of the role of averaging warehouses in the operational control of the parameters of ore streams. Nazemnye transportno-tekhnologicheskie kompleksy i sredstva. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Ground transportation and technological complexes and facilities. Materials of the International Scientific and Technical Conference], 2015, pp. 279—282. [In Russ].

28. Grigalashvili A. V. Implementation of the model of filling and unloading of a blending ore stockpile. Modern Science: actual problems of theory and practice. Series «Natural & Technical Sciences». 2016, no. 1, pp. 44—48. [In Russ].

29. Zhuravlev S. S., Rudometov S. V., Okolnishnikov V., Shakirov S. R. Application of model-oriented design to create ACS for hazardous industrial facilities. Vestnik NSU. Series: Information Technologies. 2018, vol. 16, no. 4, pp. 56—67. [In Russ].

30. Statsenko L. G., Branovets N. E. Development of the module «averaging warehouse» information system to stabilize the quality of minerals in the quarry. Vestnik of Nosov Magnitogorsk State Technical University. 2014, no. 2, pp. 5—11. [In Russ].

31. Streltsova G. A., Tkachenko A. M. Conceptual models of technology management of underground robotic flow-stream mining of hard ores. MIAB. Mining Inf. Anal. Bull. 2011, no. 6, pp. 506—517. [In Russ].

32. Zatonskiy A. V., Yazev P. A. Development of a mining simulation model for potassium ore mining planning. Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control, Radio Electronics. 2020, vol. 20, no. 4, pp. 47—54. DOI: 10.14529/ ctcr200405.

33. Popovichev D. V. Problems of designing underground silvinite ore storages. MIAB. Mining Inf. Anal. Bull. 2011, no. 3, pp. 177—181. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.