Pneumatic percussion tool to implement adaptive technologies

Authors: Plokhikh VV

The modern technologies based on vibration impact find wide application both in surface and underground mineral mining. The impact source is mostly a pneumatic percussion tool. Such equipment is used in hole-making and in other types of mining activities. The compressed air-driven impact machines are advantageous for simple design and reliable operation in unfavorable conditions. Deeper level mining faces with the acute necessity to ensure safety of personnel when operating in highly gassy air. One of the ways of solving this problem is engineering of pneumatic percussion tools suitable for implementation of adaptive technologies. These technologies enable application of the remote drilling control, and the tools can operate as parts of robotic drilling facilities capable of automatic unmanned functioning. A feature of the adaptive drilling technologies is the ability of an impactor to vary the size and mechanism of impulse in a wide range subject to properties of a medium being treated. The proposed construction diagram of an air impact tool allows adjustment of output energy parameters immediately in operation. The implemented simulation modeling of the pneumatic percussion mechanism proves feasibility of its physical modeling. The physical analogue model test produces an indicator diagram of the tool work cycle, and the graphs of change in energy and dynamic parameters of the tool are plotted.

Keywords: adaptive technologies, robotic drilling facilities, pneumatic percussion tool, elastic valve, construction diagram, simulation model, physical model, work cycle, energy parameters, dynamic parameters.
For citation:

Plokhikh V. V. Pneumatic percussion tool to implement adaptive technologies. MIAB. Mining Inf. Anal. Bull. 2022;(7):91-103. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_91.

Issue number: 7
Year: 2022
Page number: 91-103
ISBN: 0236-1493
UDK: 622.23.05
DOI: 10.25018/0236_1493_2022_7_0_91
Article receipt date: 28.01.2022
Date of review receipt: 25.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.06.2022
About authors:

V.V. Plokhikh, Graduate Student, Junior Researcher, Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia, e-mail:, ORCID ID: 0000-0002-9939-4673.


For contacts:

1. Khazin M. L. Robotic equipment for mining operations. Vestnik of Nosov Magnitogorsk State Technical University. 2020, vol. 18, no. 1, pp. 4—15. [In Russ]. DOI: 10.18503/1995-27322020-18-1-4-15.

2. Atkinson R. D. Robotics and the future of production and work. Information Technology and Innovation Foundation. 2019.

3. Dadhich S., Bodin U., Andersson U. Key challenges in automation of earth-moving machines. Automation in Construction. 2016, vol. 68, pp. 212—222. DOI: 10.1016/j.autcon.2016.05.009.

4. Marshall J. A., Bonchis A., Nebot E., Sheding S. Robotics in mining. Springer handbook of robotics. Springer, Cham, 2016, pp. 1549—1576.DOI: 10.1007/978-3-319-32552-1_59.

5. Rakhmangulov A., Burmostrov K., Osintsev N. Sustainable pen pit mining and technical systems: concept, principles, and indicators. Sustainability. 2021, vol. 13, no. 3, article 1101. DOI: 10.3390/su13031101.

6. Mardanov V. A., Tkachenko D. G. On the use of robotics in the conduct of mining operations. Problemy gornogo dela. Sbornik nauchnykh trudov II Mezhdunarodnogo Foruma studentov, aspirantov i molodykh uchenykh-gornyakov, posvyashchennogo 100-letiyu DonNTU [Mining problems. Collection of scientific papers of the II International Forum of Students, Postgraduates and Young Mining Scientists dedicated to the 100th anniversary of DonNTU], Donetsk, 2021, pp. 89—93. [In Russ].

7. Kaurkin I. A., Zinoviev V. V. Robotization in the mining industry. Sbornik materialov IX Vserossiyskoy nauchno-prakticheskoy konferentsii molodykh uchenykh s mezhdunarodnym uchastiem «Rossiya Molodaya» [Collection of materials of the IX All-Russian Scientific and Practical Conference of Young scientists with international participation «Young Russia»], Kemerovo, 2017, pp. 35006. [In Russ].

8. Sudnishnikov B. V., Esin N. N., Tupitsyn K. K. Issledovanie i konstruirovanie pnevmaticheskikh mashin udarnogo deystviya [Research and design of pneumatic impact machines], Novosibirsk, Nauka, 1985, 135 p.

9. Gurkov K. S., Klimashko V. V., Kostylev A. D. i dr. Pnevmoproboyniki [Pneumatic punches], Novosibirsk, Izd-vo IGD SO AN SSSR, 1990, 217 p.

10. Tambovtsev P. N. Effective operating cycle of a pneumatic punch machine. Interexpo GEO-Siberia. 2018, vol. 6, pp. 197–206. [In Russ]. DOI: 10.18303/2618-981Х-2018-6-197-206.

11. Smolyanitsky B. N., Chervov V. V. Increasing the efficiency of energy carrier use in pneumatic hammers for underground construction. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no. 5, pp. 143—156. [In Russ].

12. Gaun V. A. Development and research of down-the-hole hammers with increased impact energy. Povyshenie effektivnosti pnevmoudarnykh burovykh mashin [Improving the efficiency of pneumatic percussion drilling machines], Novosibirsk, IGD SO AN SSSR, 1987 , 133 p.

13. Danilov B. B., Plokhikh V. V., Rechkin A. A., Cheshchin D. O. Patent RU 208325, 14.12.2021. [In Russ].

14. Plokhikh V. V., Danilov B. B., Cheshchin D. O. Dynamics and operating cycles of vibratory-percussive systems involved in implementation of adaptive technologies. Interexpo GEOSiberia. 2021, vol. 2, no. 4, pp. 67—77. [In Russ]. DOI: 10.33764/2618-98IX-2021-2-4-67-77.

15. Plokhikh V. V., Danilov B. B., Cheshchin D. O., and Kordubailo A. O. Justification of a principal diagram and analysis of operating cycle of pneumatic percussion machine with a variable impact power structure. Mining sciences: fundamental and applied issues. 2021, vol. 8, no. 1, pp. 315—320. [In Russ]. DOI: 15372/FPVGN2021080148.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.