Satellite-based monitoring of safety parameters in open pit mining

Operational safety and environmental protection are the basic components of effective performance in mineral mining. At the present time, the majority of minerals are extracted using the open-pit method of mining both in Russia and in the world. According to the data on mine accidents, the localization and management of such accidents takes years and great efforts and means. Aimed to prevent accidents in open pit mining, it is proposed to use an additional method based on the satellite data analysis. The satellite monitoring is applicable both at the stage of mining (current control) and at the stage of salvage and rescue operations. This article presents the classification of mine accidents by the criterion of workability of satellite data towards mining safety. The study shows that the use of satellite monitoring in mineral mining in Russia is currently at a low level. However, there is some experience gained in application of satellite technologies in the other areas of activities. Moreover, there are some positive results which can be introduced in the mining industry immediately. It is already possible to perform: control of greenhouse gas emissions on ground surface of open pit coal mines (methane and carbon dioxide), monitoring of temperature both at the stage of spontaneous ignition prevention and during fire development, as well as overseeing of any mining-induced deformations of ground surface.

Keywords: safety, mining operations, open pit mine, satellite monitoring, satellite, gas, dust, fire, earthquake, collapse.
For citation:

Kobylkin S. S., Kotelnikov A. E., Esina E. N., Sis Mue, Barry Alpha Mamadou Satellite-based monitoring of safety parameters in open pit mining. MIAB. Mining Inf. Anal. Bull. 2025;(2):43-56. [In Russ]. DOI: 10.25018/0236_1493_2025_2_0_43.

Acknowledgements:
Issue number: 2
Year: 2025
Page number: 43-56
ISBN: 0236-1493
UDK: 622.458
DOI: 10.25018/0236_1493_2025_2_0_43
Article receipt date: 23.05.2024
Date of review receipt: 30.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.01.2025
About authors:

S.S. Kobylkin1, Dr. Sci. (Eng.), Professor, e-mail: kobylkin.s@misis.ru, ORCID ID: 0000-0002-2626-208X,
A.E. Kotelnikov2, Cand. Sci. (Geol. Mineral.), Head of Chair, e-mail: kotelnikov-ae@rudn.ru, ORCID ID: 0000-0003-0622-8391,
E.N. Esina2, Cand. Sci. (Eng.), Assistant Professor, e-mail: esina-en@rudn.ru, ORCID ID: 0000-0002-1685-2406,
Sis Mue1, Cand. Sci. (Eng.), Doctoral Candidate, e-mail: sism.msmu@gmail.com, ORCID ID: 0009-0009-7838-7149,
Barry Alpha Mamadou2, Graduate Student, e-mail: alphabaryost95@gmail.com, ORCID ID: 0009-0003-2260-1421,
1 University of Science and Technology MISIS, 119049, Moscow, Russia,
2 Peoples’ Friendship University of Russia (RUDN University), Engineering Academy, 117198, Moscow, Russia.

 

For contacts:

S.S. Kobylkin, e-mail: kobylkin.s@misis.ru.

Bibliography:

1. Meshkov G. B., Petrenko I. E., Gubanov D. A. Russia’s coal industry performance for 2023. Ugol’. 2024, no. 3, pp. 18—29. [In Russ]. DOI: 10.18796/0041-5790-2024-3-18-29.

2. Lupyan E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Sen'ko K. S., Stytsenko F. V., Sychugov I. G. Satellite monitoring of forest fires in the 21st century on the territory of the Russian Federation (Data and Facts from Active Burning Detection). Current problems in remote sensing of the Earth from space. 2017, vol. 14, no. 6, pp. 158—175. [In Russ]. DOI: 10.21046/20707401-2017-14-6-158-175.

3. Morozov R. O. Tactical features of the use of satellite monitoring systems for forest fires in the investigation of destruction or damage to forest plantations. The Art of Law. 2022, no. 3(3), pp. 41—46. [In Russ].

4. Zotin A. G., Zuev D. V., Kashkin V. B., Kurako M. A., Simonov K. V. Environmental risk zones mapping using satellite monitoring data. Procedia Computer Science. 2018, vol. 126, pp. 1597—1605.

5. Bondur V. G., Tsidilina M. N., Gaponova E. V., Voronova O. S. Joint analysis of anomalous variations of various geophysical fields using space data in preparation for the earthquake in the lake Baikal area on September 22, 2020 (M=5.6). Issledovanie Zemli iz Kosmosa. 2022, no. 5, pp. 3—19. [In Russ]. DOI: 10.31857/S0205961422050049.

6. Bondur V. G., Voronova O. S. Space-based Registration of Anomalous Thermal Field Variations During Seismic Events in the Northern Caucasus from 2017 to 2022. Issledovanie Zemli iz Kosmosa. 2022, no. 6, pp. 13—26. [In Russ]. DOI: 10.31857/S0205961422060021.

7. Bondur V. G., CHimitdorzhiev T. N., Dmitriev A. V. Anomalous geodynamics before the earthquake of 2023 In Turkey, according to satellite radar interferometry 2018—2023. Issledovanie Zemli iz Kosmosa. 2023, no. 3, pp. 3—12. [In Russ].

8. Filey A. A. Monitoring Atmospheric Gas Content Based on Remote Sensing Data at the Far Eastern Center of FGBU «NITs «Planet». Current problems in remote sensing of the Earth from space. 2015, vol. 12, no. 6, pp. 71—80. [In Russ].

9. Zelenova M. S., Ginzburg V. A., Maximova O. V., Trifonova-Yakovleva A. M. Review of Current and Planned Satellite Systems for Monitoring Greenhouse Gases and Their Application to Address Applied Climate Challenges. Environmental Monitoring and Ecosystem Modelling. 2022, vol. XХXIII, no. 1-2, pp. 108—130. [In Russ]. DOI: 10.21513/0207-2564-2022-1-2-108-130.

10. Jia M., Li F., Zhang Y., Wu M., Li Y., Feng S., Wang H., Chen H., Ju W., Lin J., Cai J., Zhang Y., Jiang F. The Nord Stream pipeline gas leaks released approximately 220,000 tonnes of methane into

the atmosphere. Environmental Science and Technology. 2022, vol. 12, article 100210 DOI: 10.1016/j. ese.2022.100210.

11. Sanchez-Garcia E., Gorrono J., Irakulis-Loitxate I., Varon D., Guanter L. Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmospheric Measurement Techniques. 2022, vol. 15, pp. 1657—1674. DOI: 10.5194/amt-15-1657-2022.

12. Kobylkin S. S., Arzhanov I. E. Methodology for assessing safe distances during blasting operations in quarries. Russian Mining Industry Journal. 2021, no. 3, pp. 123—129. [In Russ]. DOI: 10. 30686/1609-9192-2021-3-123-129.

13. Vilyaev A. V., Zhantaev Zh. Sh. Monitoring of modern geodynamic processes on the territory of Kazakhstan by satellite geodesy methods. Problemy kompleksnogo geofizicheskogo monitoringa Dal'nego Vostoka Rossii. Trudy Sed'moy nauchno-tekhnicheskoy konferentsii [Problems of integrated geophysical monitoring of the Russian Far East. Proceedings of the Seventh Scientific and Technical Conference], Petropavlovsk-Kamchatskiy, 2019, pp. 41—46. [In Russ].

14. Melent'ev V. V., Matelenok I. V. Methodology of satellite microwave diagnostics of latitudinalzonal and seasonal variability of frozen soils and sea ice. Ice and Snow. 2013, vol. 53, no. 1, pp. 73—82. [In Russ].

15. Dudnikov V. YU., Vlasov A. S., Lanina T. D. Monitoring of the Earth's surface in areas of intensive subsurface use based on the method of satellite radar interferometry. Advances in current natural sciences. 2022, no. 2, pp. 54—59. [In Russ].

16. Tao Li, Thierry Leblanc, Mcdermid I. S., Keckhut P., Hauchecorne A., Xiankang Dou Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations. Journal of Geophysical Research. 2011, vol. 116, no. 12, article 11. DOI: 10.1029/2010JD015275.

17. Kobylkin S. S., Kobylkin A. S., Balovtsev S. V., Kharisov A. R. Scientifically substantiated solutions for developing instructions for compiling an emergency response plan for coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 84—98. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-84-98.

18. Bondur V., Chimitdorzhiev T., Kirbizhekova I., Dmitriev A. Estimation of postfire reforestation with SAR polarimetry and NDVI time series. Forests. 2022, vol. 13, article 814. DOI: 10.3390/ f13050814.

19. Bondur V. G., Gokhberg M. B., Garagash I. A., Alekseev D. A. Features of the modelled stressstrain state dynamics prior to the M7.1 2019 Ridgecrest earthquake in Southern California. Russian Journal оf Earth Sciences. 2022, vol. 22, article ES5002. DOI: 10.2205/2022ES000798.

20. Batugin A. S., Kobylkin A. S., Musina V. R. Study of the impact of geodynamic position of coal waste heaps on their endogenous fire risk. Journal of Mining Institute. 2021, vol. 250, pp. 526—533. [In Russ]. DOI: 10.31897/PMI.2021.4.5.

21. Batugin A. S., Kobylkin A. S., Kolikov K. S., Ivannikov A. L., Musina V. R., Khotchenkov E. V., Zunduijamts B., Ertuganova E. A., Krasnoshtanov D. M. Study of the migrating mine gas piston effect during reactivation of tectonic faults. Applied Sciences (Switzerland). 2023, vol. 13, no. 21, article 12041.

22. Kobylkin A. S., Musina V. R., Batugin A. S., Vorobyeva O., Vishnevskaya E., Ponomarev V. Modelling of aerodynamic process for coal waste dump located in geodynamically dangerous zone. IOP Conference Series. Earth and Environmental Science. 2019, vol. 221, no. 1, article 012087. DOI: 10.1088/1755-1315/221/1/012087.

23. Pugach A. S., Kobylkin S. S. Methodology for predicting rock bursts and choosing a safe direction for the mining front. Mining Science and Technology (Russia). 2022, vol. 7, no. 2, pp. 126—136. [In Russ]. DOI: 10.17073/2500-0632-2022-2-126-136.

24. Varon D. J., McKeever J., Jervis D., Maasakkers J. D., Pandey S., Houweling S., Aben I., Scarpelli T., Jacob D. J. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophysical Research Letters. 2019, vol. 46, no. 23, pp. 13507—13516. DOI: 10.1029/ 2019GL083798.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.