Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore

The research aimed to compare efficiency of screens and hydrocyclones in closedcycle grinding at the second stage of the processing flowsheet for titanomagnetite ore from Gusevogorskoe deposit. Replacement of hydrocyclones by screens in the closed cycle of grinding resulted in the increase in the mass fraction of iron from 58.9 to 62.8% in the magnetic product of wet magnetic separation at the third stage of the processing flowsheet. This implies possibility to reduce the number of grinding stages from three to two. The screen as compared with the hydrocyclone ensures higher efficiency of 0.071 mm size grade sizing by 22.08% and better extraction of 71 µm to underflow by 28.07%. This allows reducing the circulating load at the second stage of grinding from 176.4 to 99.8%. The introduction of screens in the closed cycle of grinding makes it possible to improve dissociation of ore and rock minerals and to decrease overgrinding. The total efficiency of magnetic separation at the second and third stages increases as a result. Owing to the decreased overgrinding of ore and rock minerals due to the use of screens instead of hydrocyclones, the mass fraction of 0.071 mm size is reduced in the concentrate from 93.2 to 68.1%. For these reasons, the two-stage grinding flowsheet with the screens included in the second stage is usable for production of concentrate for agglomeration. Pelletization concentrate production using the two-stage flowsheet is inexpedient.

Keywords: titanomagnetite ore, grinding stage, specific mill capacity, fine screening, dissociation of rock minerals, undersize, solid mass fraction, iron mass fraction.
For citation:

Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. MIAB. Mining Inf. Anal. Bull. 2022;(5):154-166. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_154.

Issue number: 5
Year: 2022
Page number: 154-166
ISBN: 0236-1493
UDK: 622.74: 622.753
DOI: 10.25018/0236_1493_2022_5_0_154
Article receipt date: 01.11.2021
Date of review receipt: 01.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

A.E. Pelevin, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: a-pelevin@yandex.ru, Ural State Mining University, 620144, Ekaterinburg, Russia, ORCID ID: 0000-0001-6063-3932,
N.A. Sytykh, Head of Quality Control Department, EVRAZ Kachkanar Mining and Processing Plant, 624351, Kachkanar, Russia.


For contacts:

A.E. Pelevin, e-mail: a-pelevin@yandex.ru.


1. Vaisberg L. A., Korovnikov A. N. Fine screening as an alternative to hydraulic classification by size. Obogashchenie Rud. 2004, no. 3, pp. 23–34. [In Russ].

2. Vaisberg L. A., Korovnikov A. N., Trofimov V. A. Innovative reequipment of screening circuits (to commemorate the 100th anniversary of the Mekhanobr Institute). Gornyi Zhurnal. 2017, no. 1, pp. 11–17. [In Russ]. DOI: 10.17580/gzh.2017.01.02.

3. Markauskas D., Kruggel-Emden H. Coupled DEMSPH simulations of wet continuous screening. Advanced Powder Technology. 2019, vol. 30, no. 12, рр. 2997–3009.

4. Vaisberg L. A., Baldaeva T. M., Ivanov K. S., Otroshchenko A. A. Screening efficiency with circular and rectilinear vibrations. Obogashchenie Rud. 2016, no. 1, pp. 3–9. [In Russ]. DOI: 10.17580/or.2016.01.01.

5. Pelevin A. E., Sytykh N. A. Titanomagnetite ore two-stage grinding circuit tests. Obogashchenie Rud. 2018, no. 2, pp. 13–18. [In Russ]. DOI: 10.17580/or.2018.02.03.

6. Palaniandy S., Halomoan R., Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit — The multi-component approach. Minerals Engineering. 2019, vol. 133, рр. 10–18. DOI: 10.1016/j.mineng.2018.12.019.

7. Pelevin A. E., Sytykh N. A. Fine hydraulic screening for staged separation of titaniummagnetite concentrate. Obogashchenie Rud. 2021, no. 1, pp. 8–14. [In Russ]. DOI: 10.17580/ or.2021.01.02.

8. Pelevin A. E., Sytykh N. A. Iron concentrate stage separation by means of drum magnetic separator with modified separating bath. Obogashchenie Rud. 2016, no. 4, pp. 10–15. [In Russ]. DOI: 10.17580/or.2016.04.02.

9. Nemykin S. A., Kopanev S. N., Mezentseva E. V., Okunev S. M. Iron concentrate production with the increased content of useful component. Gornyi Zhurnal. 2017, no. 5, pp. 27–31. [In Russ]. DOI: 10.17580/gzh.2017.05.05.

10. Ismagilov R. I., Kozub A. V., Gridasov I. N., Shelepov E. V. Advanced solutions applied by JSC Andrei Varichev Mikhailovsky GOK to improve ferruginous quartzite concentration performance. Russian Mining Industry. 2020, no. 4, pp. 98–103. [In Russ]. DOI: 10.30686/16099192-2020-4-98-103.

11. Opalev A. S., Khokhulya M. S., Fomin A. V., Karpov I. V. Creation of innovative technologies for production of high-quality iron concentrate production in the North West of Russia. Gornyi Zhurnal. 2019, no. 6, pp. 56–60. [In Russ]. DOI: 10.17580/gzh.2019.06.17.

12. Povarov A. N. Gidrotsiklony na obogatitel'nykh fabrikakh [Hydrocyclones at dressing mills], Moscow, Nedra, 1978. 232 p.

13. Botha S., le Roux J. D., Craig I. K. Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit. Minerals Engineering. 2018, vol. 123, рр. 49—62. DOI: 10.1016/j.mineng.2018.04.016.

14. Erdenesul J., Morozov V. V. Optimizing copper–molybdenum ore milling coarseness using model-oriented criteria. MIAB. Mining Inf. Anal. Bull. 2018, no. 8, pp. 176–183. [In Russ]. DOI: 10.25018/0236-1493-2018-8-0-176-183.

15. Osipova N. V. Selecting parameters of feed control algorithm for wet autogenous mill for grinding iron ore. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 146–156. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_146.

16. Melekhina K. A., Ananyev P. P., Plotnikova A. V., Timofeev A. S., Shestak S. A. Modeling and optimization of complex ore pretreatment by disintegration in autogenous mills. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 95–105. [In Russ]. DOI: 10.25018/0236-1493-202010-0-95-105.

17. Campos T. M., Bueno G., Barrios G. K. P., Tavares L. M. Pressing iron ore concentrate in a pilot-scale HPGR. Part 1: Experimental results. Minerals Engineering. 2019, vol. 140, article 105875. DOI: 10.1016/j.mineng.2019.105875.

18. Campos T. M., Bueno G., Barrios G. K. P., Tavares L. M. Pressing iron ore concentrate in a pilot-scale HPGR. Part 2: Modeling and simulation. Minerals Engineering. 2019, vol. 140, article 105876. DOI: 10.1016/j.mineng.2019.105876.

19. Campos T. M., Bueno G., Rodriguez V. A., Böttcher A-C., Kwade A., Mayerhofer F., Tavares L. M. Relationships between particle breakage characteristics and comminution response of fine iron ore concentrates. Minerals Engineering. 2021, vol. 164, article 106818. DOI: DOI: 10.1016/j.mineng.2021.106818.

20. Pelevin A. E. Effects of magnetic flocculation on iron-bearing ore concentration. Obogashchenie Rud. 2021, no. 4, pp. 15–20. [In Russ]. DOI: 10.17580/or.2021.04.03.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.