Comparative analysis of rock fragmentation by blasting using nonelectric initiation systems and detonating cords

The article presents the comparative grain-size analysis of rocks after blasting in similar geological conditions and with similar blasting patterns but using different initiation systems, namely, nonelectric initiation and detonating cord. The spotlight is on the quality of rock fragmentation by blasting as this criterion is the most demonstrative and informative estimate of blasting efficiency. This study aims to determine optimum parameters of blasting with detonating cords so that the grain-size composition of blasted rocks is the same as in blasting with nonelectric initiation systems. The relevance of the study consists in the increasing frequency of application of detonating cords as the downhole lines in blastholes charges with emulsion explosives in open pit mining practices, that has never happened before. Probable consequences of the use of detonating cords in the column charge emulsion explosives were evaluated from the analysis of grain-size composition in comparison with fragmentation by blasting with nonelectrical initiation. It is found that the quality of blasting with detonating cords in more solid unwatered rock mass in summer is the same as in blasting with nonelectric initiation systems. Furthermore, for the double benching operations, it is recommended to use nonelectric initiation systems rather than detonating cords. It is also set that in certain geological conditions and with correctly selected blast designs, detonating cords can substitute nonelectrical initiation systems. The research findings are applicable for open pit mining.

Keywords: grain-size composition, open pit mining, nonelectric initiation system, detonating cord, emulsion explosive, blast design, cumulative curve, the Swebrec function.
For citation:

Brukhavetskaya A. O. Comparative analysis of rock fragmentation by blasting using nonelectric initiation systems and detonating cords. MIAB. Mining Inf. Anal. Bull. 2024;(3):31-41. [In Russ]. DOI: 10.25018/0236_1493_2024_3_0_31.

Acknowledgements:
Issue number: 3
Year: 2024
Page number: 31-41
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236_1493_2024_3_0_31
Article receipt date: 18.12.2023
Date of review receipt: 26.01.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2024
About authors:

A.O. Brukhavetskaya, Graduate Student, University of Science and Technology MISIS, 119049, Moscow, Russia, e-mail: bruhavetskaya@gmail.com.

 

For contacts:
Bibliography:

1. Marinin M. A., Rakhmanov R. A., Alenichev I. A., Afanasyev P. I., Sushkova V. I. Effect of grain size distribution of blasted rock on WK-35 shovel performance. MIAB. Mining Inf. Anal. Bull. 2023, no. 6, pp. 111—125. [In Russ]. DOI: 10.25018/0236_1493_2023_6_0_111.

2. Domozhirov D. V. On the issue of increasing efficiency of mining and processing of mineral raw materials by controlling the parameters of drilling and blasting operations to achieve quality requirements. Vestnik of Nosov Magnitogorsk State Technical University. 2023, vol. 21, no. 1, pp. 5—14. [In Russ]. DOI: 10.18503/1995-2732-2023-21-1-5-14.

3. Naimova R. S., Norova H. Y., Mirzaev A. A. Substantiation of the influence of the rational height of the worked ledge on the efficiency of extracting minerals from the subsurface. Explosion technology. 2021, no. 132/89, pp. 133—142. [In Russ].

4. Glinsky V. P., Mardasov O. F., Matseevich B. V., Shalygin N. K., Mokhova N. V. Experience in the use of industrial checkers-detonators. Gornyi Zhurnal. 2000, no. 2, pp. 46—47. [In Russ].

5. Grigoriev A. V., Listopad G. G., Doilnitsyn V. M., Popov V. K., Andreev V. V., Gusev A. G. Experience and prospects of application of non-electric initiation at the open pits of JSC «Apatit». Gornyi Zhurnal. 2001, no. 8, pp. 37—40. [In Russ].

6. Kutuzov B. N. Prospects of Improvement of the Range of Industrial BBs for Quarries. Gornyi Zhurnal. 1996, no. 11-12, pp. 39—43. [In Russ].

7. Karabanov I. S., Dobrynin I. A. Improvement of formulating emulsion explosive for underground blasting. Explosion technology. 2023, no. 140/97, pp. 36—48. [In Russ]. DOI: 10.18698/0372-7009-2023-9-3.

8. Belin V. A. Сomparative assessment of approaches to the regulation of industrial safety in the turnover of explosive materials in the Russian Federation and the United States. Explosion technology. 2021, no. 132/89, pp. 143—163. [In Russ].

9. Wenjun Xia, Wenbo Lu, Ruize Li, Ming Chen, Zhen Lei Effect of water-decked blasting on rock fragmentation energy. Shock and Vibration. 2020, vol. 2020, article 8194801. DOI: 10.1155/2020/ 8194801.

10. Brukhavetskaya A. O. Analysis of the influence of drilling and blasting parameters on the quality of rock crushing. Explosion technology. 2022, no. 136/93, pp. 111—128. [In Russ].

11. Brukhavetskaya A. O. Current achievements in blasted rock fragmentation quality assessment: Review. MIAB. Mining Inf. Anal. Bull. 2023, no. 5, pp. 18—31. [In Russ]. DOI: 10.25018/0236_1493_ 2023_5_0_18.

12. Rakishev B. R., Orynbay A. A., Musakhan A. B. Granulometric composition of rock mass and blasted rock mass at different particle size scales of natural rocks and pieces of rocks. Explosion technology. 2021, no. 132/89, pp. 7—26. [In Russ].

13. Dremin A. V., Velikanov V. S. Regarding the particle-size composition of blasted rocks. Russian Mining Industry Journal. 2023, no. 4, pp. 73—78. [In Russ]. DOI: 10.30686/1609-9192-2023-4-73-78.

14. Guo Q., Wang Y., Yang S., Xiang Z. A method of blasted rock image segmentation based on improved watershed algorithm. Scientific Reports. 2022, vol. 12, article 7143. DOI: 10.1038/s41598022-11351-0.

15. Saadoon A., Frege M., Boukarm R., Haji R. Crush analysis using digital image processing and empirical model (KuzRam): a comparative study. Journal of Mining Institute. 2022, vol. 257, pp. 822— 832. [In Russ]. DOI: 10.31897/PMI.2022.84.

16. Ouchterlony F., Sanchidrian J. The fragmentation-energy fan concept and the swebrec function in modeling drop weight testing. Rock Mechanics and Rock Engineering. 2018, vol. 5, pp. 3129— 3156. DOI: 10.1007/s00603-018-1458-5.

17. Ouchterlony F. The Swebrec function: Linking fragmentation by blasting and crushing. Mining Technology (Institution of Mining and Metallurgy). 2005, vol. 114, pp. 29—44.

18. Sanchidrian J., Ouchterlony F. Blast-fragmentation prediction derived from the fragment sizeenergy fan concept. Rock Mechanics and Rock Engineering. 2023, vol. 56, pp. 8869—8889. DOI: 10.1007/s00603-023-03496-9.

19. Marinin M. A., Afanasyev P. I., Sushkova V. I., Ustimenko K. D., Akhmetov A. R. The experience of using the Kuz-Ram model in describing of grain size distribution of blasted rock mass. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 96—109. [In Russ]. DOI: 10.25018/0236_1493_2023_91_ 0_96.

20. Coello-Velázquez A. L., Arteaga V. Q., Menéndez-Aguado J. M., Pole F. M., Llorente L. Use of the Swebrec function to model particle size distribution in an industrial-scale Ni-Co ore grinding circuit. Metals. 2019, vol. 9, no. 813, article 882. DOI: 10.3390/met9080882.2.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.