Statistical analysis of different-scale samplings of natural electromagnetic radiation parameters in detection of geodynamically active faults

Today recording of the Earth’s natural pulse electromagnetic field (ENPEMF) finds application in the stress–strain behavior assessment of rock mass, detection of geodynamically active faults (GDAF) and in prediction of rock bursts and earthquakes. The ENPEMF parameters alter when the course of various processes in rock mass changes. Such processes may be mechanoelectrical phenomena, micro seismicity, manmade loading, etc. The resultant ENPEMF may have abnormal parameters, namely, frequency, amplitude, wave front steepness, etc. In this study, the GDAF identification parameter is the electromotive force induced in the receiving antenna by the change in the ENPEMF. The most of the related research use measurement profiles which assume the background ENPEMF. The values above the background are considered as abnormal. Such research is deficient for the absence of the broad integrated analysis of the recorded signals depending on the measurement profile length, measurement pattern density, presence of the manmade load, etc. For this reason, this study includes the statistical analysis of three profiles, three streets from one to one and a half kilometer long, three streets shorter than a half kilometer in the Central, Petrogradsky and Admiralteisky sectors in Saint-Petersburg, and the total set of profiles in the city. All in all, the scope of the analysis encompasses 1410 values of the electromotive force and the data from profiles more than 13 km of the total length. As a result, the normal values, the medium, maximum and minimum abnormal values, and the abnormality frequency are determined. On this basis, recommendations on planning measurements are given, including differentiated approach to interpretation of data from different length profiles.

Keywords: Earth’s natural pulse electromagnetic field, geodynamically active fault, SaintPetersburg, electromagnetic emission, statistical analysis, distribution bar chart, experiment.
For citation:

Iakovleva E. V., Belova M. V. Statistical analysis of different-scale samplings of natural electromagnetic radiation parameters in detection of geodynamically active faults. MIAB. Mining Inf. Anal. Bull. 2022;(7):18-39. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_18.

Acknowledgements:

The study was carried out under the state contract for scientific research in 2021, Contract No. FSRW-2020-0014.

Issue number: 7
Year: 2022
Page number: 18-39
ISBN: 0236-1493
UDK: 550.8.05
DOI: 10.25018/0236_1493_2022_7_0_18
Article receipt date: 01.12.2021
Date of review receipt: 14.02.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

E.V. Iakovleva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: yakovleva_ev@pers.spmi.ru, ORCID ID: 0000-0002-7354-0185,
M.V. Belova1, Leading Engineer, e-mail: Parkhimchik_MV@pers.spmi.ru, ORCID ID: 0000-0001-7051-278X,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

E.V. Iakovleva, e-mail: yakovleva_ev@pers.spmi.ru.

Bibliography:

1. Melnikov E. K., Shabarov A. N., Petrov E. I., Sivashchenko P. P. Influence of geodynamically active fault zones on the health of the population of the city of St. Petersburg and the Leningrad region. Gorod i geologicheskie opasnosti: materialy mezhdunarodnoy konferentsii. Ch. 2 [City and Geological Hazards: Materials of the International Conference. Part 2], SaintPetersburg, VNIIG, 2006, pp. 236—247. [In Russ].

2. Sokhrabi A., Nadimi A., Talovina I. V., Safai Kh. Structural model and tectonic evolution of the fault system in the southern part of the Khur area, Central Iran. Journal of Mining Institute. 2019, vol. 236, pp. 142—152. [In Russ]. DOI: 10.31897/PMI.2019.2.142.

3. Gaysumov M. Ya., Kerimov I. A., Badaev S. V., Gaysumov O. M., Doduev A. A. Geodynamic features of the territory of Grozny city. IOP Conference Series. Materials Science and Engineering. 2020, vol. 905, no. 1, article 012028. DOI: 10.1088/1757-899X/905/1/012028.

4. Uskov V. A., Eremenko A. A., Darbinyan T. P., Marysyuk V. P. Geodynamic hazard assessment for tectonic structures in underground mining of north ore bodies in the Oktyabrsky deposit. Journal of Mining Science. 2019, vol. 55, no. 1, pp. 77—87. DOI: 10.1134/ S1062739119015312.

5. Trifonov V. G. Pozdnechetvertichnyy tektogenez [Late quaternary tectogenesis], Moscow, Nauka, 1983, 224 p.

6. Trifonov V. G. Neotektonika Evrazii [Neotectonics of Eurasia], Moscow, Nauchyy Mir, 1999, 254 p.

7. Bachmanov D. M., Kozhurin A. I., Trifonov V. G. Database of active faults in Eurasia. Geodynamics and Tectonophysics. 2017, no. 8(4), pp. 711—736. [In Russ]. DOI: 10.5800/GT2017-8-4-0314.

8. Slemmons D. B., De Polo C. M. Evaluation of active faulting and associated hazard.Active Tectonics. Washington, National Academy Press, 1986, pp. 45—62.

9. Isakova E. P., Daniliev S. M., Mingaleva T. A. GPR for mapping fractures for the extraction of facing granite from a quarry. A case study from Republic of Karelia. E3S Web of Conferences. 2021, vol. 266, article 07007. DOI: 10.1051/e3sconf/202126607007.

10. Frid A., Frid V. Features of a large-scale survey of highways with georadar. Advances in Transportation Geotechnics IV. 2022, vol. 165. Springer, Cham. DOI: 10.1007/978-3-03077234-5_70.

11. Bespal’ko A. A., Yavorovich L. V., Eremenko A. A., Shtirts V. A. Electromagnetic emission of rocks after large-scale blasts. Journal of Mining Science. 2018, vol. 54, no. 2, pp. 187— 193. DOI: 10.1134/S1062739118023533.

12. Yavorovich L. V., Bespal'ko A. A., Fedotov P. I. Experimental research of the influence of the strength of ore samples on the parameters of an electromagnetic signal during acoustic excitation in the process of uniaxial compression. IOP Conference Series. Materials Science and Engineering. 2018, vol. 289, no. 1, article 012025. DOI: 10.1088/1757-899X/289/1/012025.

13. Bezrodny K. P., Basov A. D., Romanevich K. V. Control of the stress-strain state of the rock mass during tunnel construction using natural electromagnetic radiation method. Proceedings of the Tula States University. Sciences of Earth. 2011, no. 1, pp. 227—234. [In Russ].

14. Gospodarikov А., Chi Thanh Nguyen The impact of earthquakes on the tunnel from Hanoi metro system when the tunnel has a horseshoe shape cross-section. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 79—86.

15. Yakovleva A. A., Movchan I. B., Misseroni D., Pugno N. M., Movchan A. Multi-physics of dynamic elastic metamaterials and earthquake systems. Frontiers in Materials. 2021, vol. 7, DOI: 10.3389/fmats.2020.620701.

16. Malyshkov Yu. P., Dzhumabaev K. B. Prediction of earthquakes by the parameters of the natural pulsed electromagnetic field of the Earth. Vulkanologiya i seysmologiya. 1987, no. 1, pp. 97—103. [In Russ].

17. Krutikov V. A., Malyshkov Yu. P., Gordeev V. F., Malyshkov S. Yu., Polivach V. I. Mapping of geological faults by recording electromagnetic fields of the VLF range. Interexpo GeoSiberia. 2012. [In Russ], available at: https://cyberleninka.ru/article/n/kartirovanie-geologicheskih-razlomov-metodom-registratsii-elektromagnitnyh-poley-onch-diapazona-1 (accessed 21.04.2022).

18. Malyshkov Yu. P., Malyshkov S. Yu. Periodicity of geophysical fields and seismicity: possible links with core motion. Russian Geology and Geophysics. 2009, vol. 50, no. 2, pp. 115—130. DOI: 10.1016/j.rgg.2008.06.019.

19. Meshkov A. A., Kazanin O. I., Sidorenko A. A. Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Кuzbass mines. Journal of Mining Institute. 2021, vol. 249, pp. 342—350. [In Russ]. DOI: 10.31897/PMI.2021.3.3.

20. Voznesenskii A. S., Nabatov V. V. Estimate of crack formation in gypsiferous rock mass by the method of electromagnetic radiation recording. Journal of Mining Science. 2003, vol. 39, pp. 207–215. DOI: 10.1023/B:JOMI.0000013779.49922.fb.

21. Voznesenskii A. S., Nabatov V. V. Nabatov V. V. Method of estimation of the stress-strain state of the rock mass by the method of electromagnetic radiation registration. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2004, no. 5, pp. 16–23. [In Russ].

22. Zmiievska K., Tubaltsev O., Zmiievskyi A. Application of the method of observing the natural impulse electromagnetic field of the earth to trace watered faults on the example of Yeristovo quarry. E3S Web of Conferences. 2019, vol. 109, article 00128. DOI:10.1051/e3sconf/201910900128.

23. Kulakov G. I. The use of background electromagnetic radiation in the technological process of quarries for the extraction of building materials. MIAB. Mining Inf. Anal. Bull. 2012, no. 10, pp. 46—51. [In Russ].

24. Miszczynski M., Packo P., Zbyrad P., Stepinski T., Uhl T., Lis J., Wiatr K. Optimization of ultrasonic transducers for selective guided wave actuation. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. SPIE Proceedings. 2016, vol. 9803. DOI: 10.1117/12.2219548.

25. Zabirchenko D. N., Dyakonov S. S. Аnalysis of EIEMPZ observations over the network of stations in the North Caucasus region. identification of a characteristic image of anomalies preceding the intensification of seismicity in the Central and Eastern Caucasus. Geology and Geophysics of Russian South. 2015, no. 4, pp. 93—107. [In Russ].

26. Nazarevych A. V. On the application of geoacoustic emission and geoelectromagnetic emission (NIEMFE) methods in geodynamic studies. 16th International Conference Geoinformatics — Theoretical and Applied Aspects. Conference Proceedings. 2017, vol. 2017, article 01801. DOI: 10.3997/2214-4609.201701801.

27. Dashko R. E., Lebedeva Y. A. Improving approaches to estimating hydrogeological investigations as a part of engineering survey in megacities: case study of St. Petersburg. Water Resources. 2017, vol. 44, no. 7, pp. 875—885. DOI: 10.1134/S009780781707003X.

28. Dashko R. E., Aleksandrova O. Yu., Kotyukov P. V., Shidlovskaya A. V. Special aspects of geotechnical conditions of St. Petersburg. Razvitie gorodov i geotekhnicheskoe stroitel'stvo. 2011, no. 1, pp. 1—47. [In Russ].

29. Iakovleva E., Belova M., Soares A. Allocation of potentially environmentally hazardous sections on pipelines. Geosciences (Switzerland). 2021, vol. 11, no. 1, pp. 1—11. DOI: 10.3390/ geosciences11010003.

30. Mel'nikov E. K., Pivovarova G. M. Geodinamicheski aktivnye razlomy i ikh vozdeystvie na zdorov'e i zhiznedeyatel'nost' cheloveka [Geodynamically active faults and their impact on human health and life], Saint-Petersburg; Moscow, Ladoga-100, 2014, 177 p.

31. Melnikov E. K., Shabarov A. N. Assessment of the role of the geodynamic factor in the accident rate of pipeline systems. Journal of Mining Institute. 2010, vol. 188, pp. 203—206. [In Russ].

32. Dashko R. E. Geotechnical diagnostics of bedrock clays of the St. Petersburg region (on the example of the Lower Cambrian clay stratum). Rekonstruktsiya gorodov i geotekhnicheskoe stroitel'stvo. 2000, no. 2.

33. Melnikov E. K., Mustafin M. G., Snareva M. M. Methods for organizing geodetic control of water pipe deformations in St. Petersburg. Mine Surveying Bulletin. 2013, no. 3(95), pp. 43—47.

34. Zhukovsky Y. L., Lavrik A. Yu., Vasilkov O. S., Semenyuk A. V. Potential for electric consumption management in the conditions of an isolated energy system in a remote population. Sustainable Development of Mountain Territories. 2020, vol. 12, no. 4, pp. 583—591. DOI: 10.21177/1998-4502-2020-12-4-583-591.

35. Korzhev A., Bolshunova O., Voytyuk I., Vatlina A. Mathematical simulation of transient operation modes of an electric drive of a centrifugal pump for a slurry pipeline. E3S Web of Conferences. 2019, vol. 140, article 04012. DOI: 10.1051/e3sconf/201914004012.

36. Yungmeister D. A., Lavrenko S. A., Yacheikin A. I., Urazbakhtin R. Y. Improving the shield machine cutter head for tunneling under the conditions of the metrostroy Saint-Petersburg mines. ARPN Journal of Engineering and Applied Sciences. 2020, vol. 15, no. 11. pp. 1282— 1288.

37. Bolobov V., Chupin S., Binh L. T. On the wear intensity ratio of a striker under dynamic and static conditions. IOP Conference Series. Earth and Environmental Science. 2020, vol. 459, no. 6, article 062085. DOI: 10.1088/1755-1315/459/6/062085.

38. Malyshkov G. B., Sinkov L. S., Nikolaichuk L. A. Analysis of economic evaluation methods of environmental damage at calculation of production efficiency in mining industry. International Journal of Applied Engineering Research. 2017, vol. 10, no. 12, pp. 2551—2554.

39. Koteleva N., Frenkel I. Digital processing of seismic data from open-pit mining blasts. Applied Sciences. 2021, vol. 11, no. 1, article 383. DOI: 10.3390/app11010383.

40. Toktosopiev A. M. Comparison of variations in the background intensity of natural pulsed electromagnetic fields (EMF) of the Earth with variations in the geomagnetic field. Vestnik Instituta Seysmologii Natsional'noy Akademii Nauk Kyrgyzskoy Respubliki. 2019, no. 2(14), pp. 90—97. [In Russ].

41. Gordeev V. F., Krutikov V. A., Malyshkov S. Yu., Polivach V. I. Seasonal change in the frequency characteristics of the earth's natural pulsed electromagnetic field. Bulletin of the Kamchatka Regional Association Educational and Scientific Center (KRASEC). Physicsal and Mathematicsal Sciences. 2020, vol. 33, no. 4, pp. 199—208. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.