Strategy of formation of operating space in open pit mines based on cut-off grade control

Formation of operating spaces in open pit mines at structurally complex ore bodies should rest upon a cut-off grade strategy governed by varying economic and geological data. The managerial solutions on cut-off grades should be highly reliable in view of the stochastic nature of initial data, and should ensure flexibility of the design decisions on ultimate limits of open pit mines. Based on the implemented research, it is proved that the method of operating space formation in open pit mines should include prediction of change in the cut-off grades on low-lying horizons with regard to the current and anticipated market conditions. Decision making on an operating space in an open pit should embrace a number of scenarios: pessimistic, optimistic and long-range. Cut-off grade optimization should include the medium-term and long-term forecasts. In order to ensure admissible reliability of design choices, it is necessary to take into account complex project risks. Reliability of adopted cut-off grades is estimated as deviation of the actual values from the forecast. It is important to include probability of a scenario when the cut-off grade of ore-bearing blocks tends to the value of overburden blocks with a view to reducing the risk of underrunning design performance of an open pit mine.

Keywords: open pit limit, cut-off grade, scenario-based approach, operating space control, reliability, Monte Carlo stimulation, stochastic initial data, complex project risks.
For citation:

Fomin S. I., Govorov A. S. Strategy of formation of operating space in open pit mines based on cut-off grade control. MIAB. Mining Inf. Anal. Bull. 2024;(11):165-179. [In Russ]. DOI: 10.25018/0236_1493_2024_11_0_165.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 165-179
ISBN: 0236-1493
UDK: 622.3
DOI: 10.25018/0236_1493_2024_11_0_165
Article receipt date: 09.04.2024
Date of review receipt: 23.07.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

S.I. Fomin1, Dr. Sci. (Eng.), Professor, e-mail: fominsi@mail.ru, ORCID ID: 0000-0002-0939-1189,
A.S. Govorov1, Graduate Student, e-mail: s215078@stud.spmi.ru, ORCID ID: 0000-0001-9071-862X,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.S. Govorov, e-mail: s215078@stud.spmi.ru.

Bibliography:

1. Ahmadi M. R., Shahabi R. S. Cutoff grade optimization in open pit mines using genetic algorithm. Resources Policy. 2018, vol. 55, pp. 184—191. DOI: 10.1016/j.resourpol.2017.11.016.

2. Loginov E. V., Masalskiy S. S., Petrov K. D. Justification of technological scheme of work of the complex of extraction and loading equipment and automobile transport in open-pit mining. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 22—34. [In Russ]. DOI: 10.25018/0236_1493_2023_91_ 0_22.

3. Kaplan A. V. Formation of strategy for the development of mineral deposits under financial constraints. Bulletin of the South Ural state university. Series: Economics and management. 2020, vol. 14, no. 3, pp. 57—65. [In Russ]. DOI: 10.14529/em200306.

4. Armstrong M., Lagos T., Emery X., Homem-de-Mello T., Lagos G., Sauré D. Adaptive open-pit mining planning under geological uncertainty. Resources Policy. 2021, vol. 72, article 102086. DOI: 10.1016/j.resourpol.2021.102086.

5. Blischenko А. А. Modern mine survey techniques in the process of mining operations in openpit mines (quarries). Scientific and Practical Studies of Raw Material Issues. 2019, pp. 58—62. DOI: 10.1201/9781003017226-8.

6. Khokhlov S. V., Koteleva N., Valnev V. Automatic detection of maintenance scenarios for equipment and control systems in industry. Applied Sciences. 2023, vol. 13, article 12997. DOI: 10.3390/ app132412997.

7. Bykowa E., Raguzin I. Substantiation of estimation methods of technogenic noise impact in cadastral value determination of land plots. Land. 2024, vol. 13, no. 2, article 246. DOI: 10.3390/ land13020246.

8. Nancel-Penard P., Morales N. Optimizing pushback design considering minimum mining width for open pit strategic planning. Engineering Optimization. 2021, vol. 54, no. 9, pp. 1—15. DOI: 10.1080/0305215X.2021.1941919.

9. Loginov E. V., Tyuleneva T. A. Management of quarry parameters in order to increase the efficiency of hydraulic backhoe type excavators. Ugol'. 2021, no. 12, pp. 6—10. [In Russ]. DOI: 10.18796/0041-5790-2021-12-6-10.

10. Baloyi V. D., Meyer L. D. The development of a mining method selection model through a detailed assessment of multi-criteria decision methods. Results in Engineering. 2020, vol. 8, article 100172. DOI: 10.1016/j.rineng.2020.100172.

11. Fomin S. I. I., Govorov A. S. Justification of the scenario approach to the definition of the quarry boundaries taking into account the stochastic nature of the initial data. Minerals and Mining Engineering. 2023, no. 5, pp. 70—78. [In Russ]. DOI: 10.21440/0536-1028-2023-5-70-78.

12. Kuznetsov D. V., Kosolapov A. I. On the criterion of justification of the ore pit depth and parameters of mining transportation equipment complexes. Mining sciences: fundamental and applied issues. 2018, vol. 5, no. 1, pp. 83—87. [In Russ].

13. Vinogradov Yu. I., Khokhlov S. V., Zigangirov R. R., Miftakhov A. A., Suvorov Yu. I. Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure. Journal of Mining Institute. 2024, vol. 266, pp. 231—245. [In Russ].

14. Arsent'ev A. I., Kholodnyakov G. A. Proektirovanie gornykh rabot pri otkrytoy razrabotke mestorozhdeniy [Designing of mining operations at the open field development], Moscow, Nedra, 1994, 336 p.

15. Gavrishev S. E., Zalyadnov V. Yu. Expansion of the boundaries of open-pit mining at the complex development of the subsoil of the land. Aktual'nye problemy gornogo dela. 2016, no. 1, pp. 11—15. [In Russ].

16. Mwangi A. D., Zhianhua A., Kasomo R. M., Innocent M. M. Methods of optimization of the limit contours of open pits. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2020, no. 4, pp. 94—109. [In Russ]. DOI: 10.15372/FTPRPI20200410.

17. Rendu J. M. An introduction to cut-off grade estimation. 2nd edition. Englewood, Society form Mining, Metallurgy and Exploration, 2014, 168 p.

18. Lane K. F. The economic definition of ore: cut-off grades in theory and practice. 2nd edition. London, Mining Journal Books, 1997, 149 p.

19. Semenov A. S. Assessment of project risk in the hierarchical organization of the process of design of complex technical systems. World Applied Sciences Journal. 2014, vol. 30, no. 8, pp. 1080— 1082. DOI: 10.5829/idosi.wasj.2014.30.08.14114.

20. Cherepovitsyn A. E., Larichkin F. D., Novoseltseva V. D., Fadeev A. M., Goncharova L. I. Methodological approaches to scenario planning in mineral and raw materials complex. Problems of territory’s development. 2017, no. 6 (92), pp. 53—67. [In Russ].

21. Guo H., Nguyen H., Vu D. A., Bui X. N. Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach. Resources Policy. 2019, vol. 74, article 101474. DOI: 10.1016/j.resourpol.2019.101474.

22. Darbinyan T. P., Tsymbalov A. A., Zubov V. P., Kolganov A. В. Influence of rock mass fracturing on dilution of disseminated copper-nickel ores during their extraction at the Oktyabrsky mine. Gornyi Zhurnal. 2023, no. 6, pp. 19—25. [In Russ]. DOI: 10.17580/gzh.2023.06.03.

23. Kazanin O. I., Sidorenko A. A., Evsiukova A. A., Zilu Liu Justification of the longwall panel entries support technology when mining gently inclined coal seams at large depths. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 5—21. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_5.

24. Dimitrakopoulos R. A., James A. L. Stochastic optimization formulation for the transition from open pit to underground mining. Optimization and Engineering. 2017, vol. 18, no. 3, pp. 793—813. DOI: 10.1007/s11081-017-9361-6.

25. Baek J., Choi Y., Park H.-S. Uncertainty representation method for open-pit optimization results due to variation in mineral prices. Minerals. 2016, vol. 6, no. 1, article 17. DOI: 10.3390/min6010017.

26. Kalinin D. F., Egorov A. S., Bolshakova N. V., Sekerina D. D. Information-statistical forecast of oil and gas content in the marginal part of the Koryak-Kamchatka folded region. Bulletin of Kamchatka regional association «Educational-Scientific centre». Earth sciences. 2023, no. 1(57), pp. 63—88. [In Russ]. DOI: 10.31431/1816-5524-2023-1-57-63-88.

27. Bragin V. I., Kharitonova M. Yu., Matsko N. A. Probabilistic approach to the assessment of dynamic board grade. Journal of Mining Institute. 2021, vol. 251, pp. 617—625. [In Russ]. DOI: 10.31897/PMI.2021.5.1.

28. Matrokhina K. V., Trofimets V. Y., Mazakov E. B., Makhovikov A. B., Khaykin M. M. Development of the methodology of scenario analysis of investment projects of enterprises of mineral and raw materials complex. Journal of Mining Institute. 2023, vol. 259, pp. 112—124. [In Russ]. DOI: 10.31897/PMI.2023.3.

29. Kotkin V. A. Balance of interests of the state and subsoil users when choosing the on-board content of a useful component. Mineral Resources of Russia. Economics & Management. 2006, no. 5, pp. 57—60. [In Russ].

30. Litvinenko V. S., Tsvetkov P. S., Molodtsov K. V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining. 2020, no. 1, pp. 36—41. DOI: 10.17580/em.2020.01.07.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.